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Today’s Agenda

e Review of Mathematical Tools
e Expectation
e Variance

e Review of Class Materials



Review of Mathematical Tools: Expectation

e Rule 1: For constant ¢ and random variable X, E[cX] = cE[X]

e Rule 2: For random variable X and Y, E[X + Y] = E[X] + E[Y]

Rule 3: If X and Y are independent, E[X | Y] = E[X]

Rule 4: Law of lterated Expectation

E[X] = E[E[X | Y]}

e Recommendations
e Check which variable is random and which is not
e Always think about how to use law of iterated expectation



Review of Mathematical Tools: Variance
Rule 1: For constant ¢ and random variable X,

V[eX] = 2V[X]
Rule 2: For random variable X and Y/,

VX + Y] = V[X] + V[Y] + 2Cov(X, Y)
e If X and Y are independent, Cov(X,Y) =0

Rule 3: Alternative representation

V[X] = E[X?] — E[X]?

Rule 4: Law of Total Variance

VIX] = VIE[X | Y]] + E[VIX | Y]]

Recommendations
e Check which variable is random and which is not
e Check which variable is independent of other variable (Rule 2)
e Always think about how to use rule 3 (typically easier to use)



Review of Class Materials

e Assumptions for Causal Inference

e Two frameworks
e Finite-Population: Fisher's Permutation Test, SATE (Neyman)
e Super-Population: PATE (Neyman)

e Better Experiments

e Efficiency improvement with covariates
e Block randomization, Matched-pair design
e Regression (Post-Stratification)

e Interference
e Cluster Randomized Experiment
e Conditional Randomization Test

e Non-Compliance
e Instrumental Variable



Assumptions for Causal Inference

e Randomization (a.k.a ignorability)!: Under complete
randomization,

Yi(t) L T;
with P(T; = t) > 0 for all t.
e Consistency: Yj(t) = Y; when T; =t

e It excludes interference (your potential outcome is function of
other's treatment status)

For block randomization, we assume complete randomization *within* block



Two inference frameworks: Overview

e within sample inference (finite-population framework)
e Given data on n units (i = 1,--- , n), we are interested in the
average treatment effect on that sample
e Only source of randomness is treatment assignment
e Fisher's Permutation Test: talk about individual (sharp null
hypothesis)
e SATE (Neyman): Talk about sample averages

e population inference (super-population framework)
e Generalizing the inference on the obtained sample to some
population of interest
e Source of randomness is (1) treatment assignment and (2) sampling
e Example: PATE (Neyman)



Two inference frameworks: Overview
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Efficiency Improvements with Covariates

e We often observe pre-treatment covariates — We want to use it to
improve efficiency

e Approach 1: Better design with covariates
e Block randomization: Randomize treatment within block
e Matched-pair design: Randomize treatment within pair
e Pair is the smallest block
e You design experiments with covariates
e Randomization is not complete randomization

e Approach 2: Better inference with regression

e Use covariates to improve efficiency in inference
e Randomization can be complete randomization

e Question: Does linearity matter?
e Regression: Vi =a+ 8T +6X; + ¢
e This model is pretty strong!
e Everyone has same effect 3 (constant treatment effect)
e Linearity in control variable



Regression and Causal Inference

Question: Does linearity of regression matter?
e Does it estimate ATE when violating linearity?
e Does it improve efficiency compared to diff-in-means when violating
linearity?

Case l: Yi=a+ 8T, +¢
e Estimate ATE without assuming linearity (no constant treatment
effect)
e Same variance as difference-in-means
Case 2: Vi=a+ T+~ X +¢
e Consistent ATE without assuming linearity (no constant treatment
effect)
e No guarantee for efficiency improvement without correct modeling
Case 3: Vi=a+ AT+~ ' Xi+ 8 TiX;i +e
e Consistent ATE without assuming linearity (no constant treatment
effect)
e Improve efficiency always
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Interference

e Interference: Your potential outcome is influenced by other's
treatment status
e Under consistency, Y;(T; =t) = Y; when T; =t
e If there is interference, Yi(T1 =t1, -, Tp=t,) # Yi(Ti = t)

e How to deal with it?
e Cluster Randomization: Design experiments that allow
interference
e Conditional Randomization Test: Detect spillover effects
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Cluster Randomization

e Cluster randomized experiment: assign treatment at the cluster
level
e We allow spillover within each cluster
e We assume no spillover across clusters

e Because everyone in each cluster is in the same treatment status,

Yi(Tyo - Tmyg) = Yi(Tj)

J

Allowing interference within cluster j

e Inference under cluster randomization
e Regard each cluster as a unit of analysis
e Apply Neyman's analysis

12



Conditional Randomization Test (Example)

e Let's understand the example from the class again
e Gray units: treated / White units: untreated
e Focal units: unit 3 and 4

— @
(O—©®

e Question: Are units 3 and 4 affected by the treatment of their
friends?
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Conditional Randomization Test (Example)

e Null Hypothesis: Y3, Yy L T1, 7T, Ts, Te ’ T3, Ty
e Under the null, given the fixed value of T3 and T, the permutation
of Ty, Ty, Ts, Te should not affect Y3, Ya

e Remark: connection from permutation test
e Permutation Test: Assume sharp null. Randomization is guaranteed
by design
e CRT: Randomization is justifiable under the null

e Procedure

e STEP 1: Calculate test statistic Corr( Yiocal, ﬂricnd) on the
observed data

e STEP 2: Permute the treatment assignment T, T, Ts, Tg given
the original value of T3, Ty

e STEP 3: For each permutation, calculate the test statistic and
create the reference distribution

e STEP 4: Compare the observed test statistic with the reference
distribution
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Non-Compliance

e Sometimes we cannot directly force treatments
e We instead give encouragement to take the treatment
e But some units might refuse to take the treatment

e Method 1: Intention-to-Treat (ITT) analysis
e Estimate the effect of encouragement, not treatment

e Method 2: Instrumental Variable
e Use encouragement to identify Local ATE (LATE)
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Non-Compliance: Complier

Four principal strata (or compliance types):
Compliers: Ti(Zj=1)=1and T;(Z;=0)=0
Always-takers: T;(Z;=1)=T;(Z;=0)=1
Never-takers: T;(Z;=1)=T;{(Z; =0)=0
Defiers: Ti(Zi=1)=0and T;(Zi=0)=1

‘ Zi:]- Z,‘ZO

T; =1 | Complier / Always-taker  Defier / Always-taker
T;=0 Defier / Never-taker Complier / Never-taker
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Instrumental Variable

e Assumption 1 (Randomization): Instruments are randomized so
that

{Y,(T, =1t, Zi = Z), T,'(Z,' = Z)} 1 Z

e Assumption 2 (Exclusion Restriction): Instruments affect
outcome only through treatment so that

e Assumption 3 (Monotonicity): No defiers
e Defiers: Those who would take treatment when not encouraged,
but would not when encouraged

T,'(Z,' = 1) > T,'(Z,' = 0)
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Instrumental Variable: Identification (1)

o |ITT effect is defined as

ITT := E[Y;(Z = 1) — Yi(Z; = 0)]
e By randomization and consistency, we have
E[Yi(Z = 2)| =E[Yi(Zi = 2) | Z = 2] = E[Y; | Z = 2]
e Thus, ITT effect is identified as
E[Yi(Z = 1) - Yi(Z = 0] = E[Y; | Z = 1] ~ E[Y; | Z = (]
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Instrumental Variable: Identification (2)

e Now, notice that
Yi(Zi = 2) = Yi(Ti = Ti(2), Z; = z)

e This is because T;(z) is a value of treatment under Z; = z
e So, Yi(T; = Ti(z),Z; = z) is function of only Z; = z

e So, we can write ITT Effect as

ElYi(Z =1, Ti(Z =1))— Yi(Z =0,Ti(Z =1))]
=E[Y;| Z =1]—E[Y;| Z = 0]

Estimatable from Data (ldentified)
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Instrumental Variable: Identification (3)
e By law of iterated Expectation, we can write

E[Yi(1, Ti(1)) — Yi(0, Ti(0))] = E|E[A | Ti(1), Ti(O)]}
Principal Strata

where A = Y;(1, T;(1)) — Y;(0, T;(0))

e This is equivalent to

=E[A | Ti(1) = 1, Ti(0) = O] P(T;(1) = 1, Ti(0) = 0)
Complier
FE[A| Ti(1) =1, Ti(0) = 1] P(T;(1) = 1, T:(0) = 1)
Always-Taker
+E[A | Ti(1) =0, T;(0) = 0] P(T;(1) = 0, T;(0) = 0)
Never-Taker
+E[A [ Ti(1) =0, Ti(0) = 1] P(T;(1) =0, Ti(0) = 1)

Defier
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Instrumental Variable: Identification (4)

e Notice that P(T;(1) =0, T;(0) = 1) = 0 (i.e., no defier)

e Also notice that for always taker,
E[A | Ti(1) =1, T;(0) = 1]

=E[Yi(Z =1, Ti(1)) - Yi(Z; =0, T;(0)) | Ti(1) =1, Ti(0) = 1]
=E[Yi(Z=1,T,=1)-Yi(Z=0,T; =1)| T{(1) =1, T;(0) = 1]

e By exclusion, we have Y;(T; =t,Z; = z) = Yi(T; = t). So,

=E[Y(Ti=1)-VY(T;=1)| T:(1)=1,T;(0)=1]=0

=0

e Same holds for never-taker
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Instrumental Variable: Identification (5)

e Hence,

E[Y;| 2 =1]-E[Y;| Z =]
=E[A | Ti(1) = 1, Ti(0) = 0] P(T;(1) = 1, T;(0) = 0)
Complier
+E[A | Ti(1) =1, T;(0) =1]P(T;(1) =1, T;(0) = 1)
=0
+E[A | Ti(1) =0, T;(0) = 0] P(T;(1) = 0, T:(0) = 0)

=0
+E[A | Ty(1) =0, T;(0) = 1] P(T;(1) = 0, T;(0) = 1)
=0
=E[A ] Ti(1) =1, Ti(0) = 0] P(Ti(1) = 1, Ti(0) = 0)

Complier
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Instrumental Variable: Identification (6)
e Finally, notice that

E[Ti(1) — Ti(0)]

=E[T;(1) | Zr=1]—E[T;(0) | Zr=0] (. Randomization)
=E[T; | Zi=1] - E[T; | Zi=0] (. Consistency)
=P(Ti=1|Z=1)-P(Tj=1|Z=0) (. T;is binary)

= P(Always-taker or Complier) — P(Always-Taker) (*." no defier)
= P(Complier) = P(T;(1) =1, T;(0) = 0)

e Therefore,

E[Y; | Z = 1] —E[Y; | Z = 0]
E[T;| Z =1]—E[T;| Z = 0]

Estimatable from Data

E[A | Ti(1) =1, T;(0) =0] =

Late (ATE among complier)
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