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Today’s Agenda

• Review of Mathematical Tools
• Expectation
• Variance

• Review of Class Materials
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Review of Mathematical Tools: Expectation

• Rule 1: For constant c and random variable X , E[cX ] = cE[X ]

• Rule 2: For random variable X and Y , E[X + Y ] = E[X ] + E[Y ]

• Rule 3: If X and Y are independent, E[X | Y ] = E[X ]

• Rule 4: Law of Iterated Expectation

E[X ] = E
[
E[X | Y ]

]

• Recommendations
• Check which variable is random and which is not
• Always think about how to use law of iterated expectation
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Review of Mathematical Tools: Variance
• Rule 1: For constant c and random variable X ,

V[cX ] = c2V[X ]

• Rule 2: For random variable X and Y ,
V[X + Y ] = V[X ] + V[Y ] + 2Cov(X , Y )

• If X and Y are independent, Cov(X , Y ) = 0

• Rule 3: Alternative representation

V[X ] = E[X 2] − E[X ]2

• Rule 4: Law of Total Variance

V[X ] = V[E[X | Y ]] + E[V[X | Y ]]

• Recommendations
• Check which variable is random and which is not
• Check which variable is independent of other variable (Rule 2)
• Always think about how to use rule 3 (typically easier to use) 4



Review of Class Materials

• Assumptions for Causal Inference

• Two frameworks
• Finite-Population: Fisher’s Permutation Test, SATE (Neyman)
• Super-Population: PATE (Neyman)

• Better Experiments
• Efficiency improvement with covariates

• Block randomization, Matched-pair design
• Regression (Post-Stratification)

• Interference
• Cluster Randomized Experiment
• Conditional Randomization Test

• Non-Compliance
• Instrumental Variable
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Assumptions for Causal Inference

• Randomization (a.k.a ignorability)1: Under complete
randomization,

Yi(t) ⊥ Ti

with P(Ti = t) > 0 for all t.

• Consistency: Yi(t) = Yi when Ti = t
• It excludes interference (your potential outcome is function of

other’s treatment status)

1For block randomization, we assume complete randomization *within* block
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Two inference frameworks: Overview

• within sample inference (finite-population framework)
• Given data on n units (i = 1, · · · , n), we are interested in the

average treatment effect on that sample
• Only source of randomness is treatment assignment
• Fisher’s Permutation Test: talk about individual (sharp null

hypothesis)
• SATE (Neyman): Talk about sample averages

• population inference (super-population framework)
• Generalizing the inference on the obtained sample to some

population of interest
• Source of randomness is (1) treatment assignment and (2) sampling
• Example: PATE (Neyman)
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Two inference frameworks: Overview
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Efficiency Improvements with Covariates
• We often observe pre-treatment covariates → We want to use it to

improve efficiency

• Approach 1: Better design with covariates
• Block randomization: Randomize treatment within block
• Matched-pair design: Randomize treatment within pair

• Pair is the smallest block
• You design experiments with covariates

• Randomization is not complete randomization

• Approach 2: Better inference with regression
• Use covariates to improve efficiency in inference

• Randomization can be complete randomization
• Question: Does linearity matter?

• Regression: Yi = α + βT + δX̃i + ϵi
• This model is pretty strong!
• Everyone has same effect β (constant treatment effect)
• Linearity in control variable
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Regression and Causal Inference
• Question: Does linearity of regression matter?

• Does it estimate ATE when violating linearity?
• Does it improve efficiency compared to diff-in-means when violating

linearity?

• Case 1: Yi = α + βTi + ϵi
• Estimate ATE without assuming linearity (no constant treatment

effect)
• Same variance as difference-in-means

• Case 2: Yi = α + βTi + γ⊤X̃i + ϵi
• Consistent ATE without assuming linearity (no constant treatment

effect)
• No guarantee for efficiency improvement without correct modeling

• Case 3: Yi = α + βTi + γ⊤X̃i + δ⊤Ti X̃i + ϵi
• Consistent ATE without assuming linearity (no constant treatment

effect)
• Improve efficiency always
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Interference

• Interference: Your potential outcome is influenced by other’s
treatment status

• Under consistency, Yi(Ti = t) = Yi when Ti = t
• If there is interference, Yi(T1 = t1, · · · , Tn = tn) ̸= Yi(Ti = t)

• How to deal with it?
• Cluster Randomization: Design experiments that allow

interference
• Conditional Randomization Test: Detect spillover effects
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Cluster Randomization

• Cluster randomized experiment: assign treatment at the cluster
level

• We allow spillover within each cluster
• We assume no spillover across clusters

• Because everyone in each cluster is in the same treatment status,

Yij(T1j , · · · , Tmj j)︸ ︷︷ ︸
Allowing interference within cluster j

= Yij(Tj)

• Inference under cluster randomization
• Regard each cluster as a unit of analysis
• Apply Neyman’s analysis
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Conditional Randomization Test (Example)

• Let’s understand the example from the class again
• Gray units: treated / White units: untreated
• Focal units: unit 3 and 4

• Question: Are units 3 and 4 affected by the treatment of their
friends?
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Conditional Randomization Test (Example)
• Null Hypothesis: Y3, Y4 ⊥⊥ T1, T2, T5, T6 | T3, T4

• Under the null, given the fixed value of T3 and T4, the permutation
of T1, T2, T5, T6 should not affect Y3, Y4

• Remark: connection from permutation test
• Permutation Test: Assume sharp null. Randomization is guaranteed

by design
• CRT: Randomization is justifiable under the null

• Procedure
• STEP 1: Calculate test statistic Corr(Yfocal, T̄friend) on the

observed data
• STEP 2: Permute the treatment assignment T1, T2, T5, T6 given

the original value of T3, T4
• STEP 3: For each permutation, calculate the test statistic and

create the reference distribution
• STEP 4: Compare the observed test statistic with the reference

distribution
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Non-Compliance

• Sometimes we cannot directly force treatments
• We instead give encouragement to take the treatment
• But some units might refuse to take the treatment

• Method 1: Intention-to-Treat (ITT) analysis
• Estimate the effect of encouragement, not treatment

• Method 2: Instrumental Variable
• Use encouragement to identify Local ATE (LATE)
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Non-Compliance: Complier

• Four principal strata (or compliance types):
• Compliers: Ti(Zi = 1) = 1 and Ti(Zi = 0) = 0
• Always-takers: Ti(Zi = 1) = Ti(Zi = 0) = 1
• Never-takers: Ti(Zi = 1) = Ti(Zi = 0) = 0
• Defiers: Ti(Zi = 1) = 0 and Ti(Zi = 0) = 1

Zi = 1 Zi = 0
Ti = 1 Complier / Always-taker Defier / Always-taker
Ti = 0 Defier / Never-taker Complier / Never-taker
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Instrumental Variable
• Assumption 1 (Randomization): Instruments are randomized so

that

{Yi(Ti = t, Zi = z), Ti(Zi = z)} ⊥ Zi

• Assumption 2 (Exclusion Restriction): Instruments affect
outcome only through treatment so that

Yi(Ti = t, Zi = z) = Yi(Ti = t)

• Assumption 3 (Monotonicity): No defiers
• Defiers: Those who would take treatment when not encouraged,

but would not when encouraged

Ti(Zi = 1) ≥ Ti(Zi = 0)
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Instrumental Variable: Identification (1)

• ITT effect is defined as

ITT := E[Yi(Zi = 1) − Yi(Zi = 0)]

• By randomization and consistency, we have

E[Yi(Zi = z)] = E[Yi(Zi = z) | Zi = z ] = E[Yi | Zi = z ]

• Thus, ITT effect is identified as

E[Yi(Zi = 1) − Yi(Zi = 0)] = E[Yi | Zi = 1] − E[Yi | Zi = 0]
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Instrumental Variable: Identification (2)

• Now, notice that

Yi(Zi = z) = Yi(Ti = Ti(z), Zi = z)

• This is because Ti(z) is a value of treatment under Zi = z
• So, Yi(Ti = Ti(z), Zi = z) is function of only Zi = z

• So, we can write ITT Effect as

E[Yi(Zi = 1, Ti(Zi = 1)) − Yi(Zi = 0, Ti(Zi = 1))]
= E[Yi | Zi = 1] − E[Yi | Zi = 0]︸ ︷︷ ︸

Estimatable from Data (Identified)
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Instrumental Variable: Identification (3)
• By law of iterated Expectation, we can write

E[Yi(1, Ti(1)) − Yi(0, Ti(0))] = E
[
E[∆ | Ti(1), Ti(0)︸ ︷︷ ︸

Principal Strata

]
]

where ∆ = Yi(1, Ti(1)) − Yi(0, Ti(0))

• This is equivalent to

= E[∆ | Ti(1) = 1, Ti(0) = 0]P(Ti(1) = 1, Ti(0) = 0)︸ ︷︷ ︸
Complier

+ E[∆ | Ti(1) = 1, Ti(0) = 1]P(Ti(1) = 1, Ti(0) = 1)︸ ︷︷ ︸
Always-Taker

+ E[∆ | Ti(1) = 0, Ti(0) = 0]P(Ti(1) = 0, Ti(0) = 0)︸ ︷︷ ︸
Never-Taker

+ E[∆ | Ti(1) = 0, Ti(0) = 1]P(Ti(1) = 0, Ti(0) = 1)︸ ︷︷ ︸
Defier
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Instrumental Variable: Identification (4)

• Notice that P(Ti(1) = 0, Ti(0) = 1) = 0 (i.e., no defier)
• Also notice that for always taker,

E[∆ | Ti(1) = 1, Ti(0) = 1]
= E[Yi(Zi = 1, Ti(1)) − Yi(Zi = 0, Ti(0)) | Ti(1) = 1, Ti(0) = 1]
= E[Yi(Zi = 1, Ti = 1) − Yi(Zi = 0, Ti = 1) | Ti(1) = 1, Ti(0) = 1]

• By exclusion, we have Yi(Ti = t, Zi = z) = Yi(Ti = t). So,

= E[Yi(Ti = 1) − Yi(Ti = 1)︸ ︷︷ ︸
=0

| Ti(1) = 1, Ti(0) = 1] = 0

• Same holds for never-taker
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Instrumental Variable: Identification (5)
• Hence,

E[Yi | Zi = 1] − E[Yi | Zi = 0]
= E[∆ | Ti(1) = 1, Ti(0) = 0]P(Ti(1) = 1, Ti(0) = 0)︸ ︷︷ ︸

Complier

+ E[∆ | Ti(1) = 1, Ti(0) = 1]︸ ︷︷ ︸
=0

P(Ti(1) = 1, Ti(0) = 1)

+ E[∆ | Ti(1) = 0, Ti(0) = 0]︸ ︷︷ ︸
=0

P(Ti(1) = 0, Ti(0) = 0)

+ E[∆ | Ti(1) = 0, Ti(0) = 1]P(Ti(1) = 0, Ti(0) = 1)︸ ︷︷ ︸
=0

= E[∆ | Ti(1) = 1, Ti(0) = 0]P(Ti(1) = 1, Ti(0) = 0)︸ ︷︷ ︸
Complier
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Instrumental Variable: Identification (6)
• Finally, notice that

E[Ti(1) − Ti(0)]
= E[Ti(1) | Zi = 1] − E[Ti(0) | Zi = 0] (∵ Randomization)
= E[Ti | Zi = 1] − E[Ti | Zi = 0] (∵ Consistency)
= P(Ti = 1 | Zi = 1) − P(Ti = 1 | Zi = 0) (∵ Ti is binary)
= P(Always-taker or Complier) − P(Always-Taker) (∵ no defier)
= P(Complier) = P(Ti(1) = 1, Ti(0) = 0)

• Therefore,

E[∆ | Ti(1) = 1, Ti(0) = 0]︸ ︷︷ ︸
Late (ATE among complier)

= E[Yi | Zi = 1] − E[Yi | Zi = 0]
E[Ti | Zi = 1] − E[Ti | Zi = 0]︸ ︷︷ ︸

Estimatable from Data
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