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Today’s Agenda

e Review of Mathematical Tools
e Probability
e Independence
e Law of Total Probability
e Bayes Rule

e Review of Class Materials



Review of Mathematical Tools: Probability (1)
e Conditional Probability:
P(Xi=x,Yi=y)

P(Yi =y)

P(Xi=x|Yj=y)=

e Law of Total Probability:
P(Xi=x)=) P(Xi=x|Yi=y)P(Yi=y)
y

e This tells us that if you know joint probability P(X; = x, Y; = y),
then you can calculate the marginal probability P(X; = x) or
P(Y; =y) by

P(X;=x)=Y P(Xi=x,Y;i=y)
y
e Also, if you know conditional probability P(X; = x | Y; = y) and

one marginal probability P(Y; = y), you can calculate the other
marginal probability P(X; = x) by

P(X=x)=) P(Xi=x|Yi=y)B(Yi=y)



Review of Mathematical Tools: Probability (2)

e Bayes Rule:

P(Yi = y | Xi = x)P(X; = x)
P(Y; =y)

P(Xi =x|Yi=y) =

e Be familiar with them!
e Practice final question 2 requires them!



Review of Class Materials

e Quasi-Experimental Design for Observational Data
e Selection on Observable
e Regression Discontinuity Design (RDD)
e Panel Data
e Difference-in-Difference / Synthetic Control
e Time-varying treatment / Mediation
e (Instrumental Variable)

e Different Estimation Strategies
e Outcome regression
e Matching
o Weighting
e Doubly Robust Estimation

e Robustness Check
e Sensitivity analysis
e Partial Identification



Estimand, ldentification, Estimation

e Estimand: Quantity of Interest / Target Parameter
e In this class, we are interested in counterfactual
e Example:

ATE: E[Yi(1) — Y;(0)]

ATT: E[Yi(1) — Yi(0) | T: =1]

ATC: E[Yi(1) — Yi(0) | T; = 0]

CDE: E[Yi(T; = t,M; = m) — Yi(T; = t/, M; = m)]

o ldentification: Write down your estimand with respect to
observed data law
e Example: Under conditional ignorability, ATE is identified as
T=E[E[Y; | T = 1, X]] - E[E[Y; | T; = 0, X]]

e Estimation: Propose the estimator (the law you can calculate
from the data)
e Example: If you have outcome model i( T;, X;), then your estimator

for ATE is y
£ = Z (0, X))}
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Selection on Observable (1)

e Assumptions
e Conditional ignorability given confounder X;:

{Yi(1), Yi(0)} 1L T | X

e Positivity: 0 <P(T; =1|X; =x) <1 for any X; = x
e Consistency: Y;(T;) =Y, for all i

e We can identify average treatment effect nonparametrically:

Tate = E[Yi(1) — Yi(0)]

= E[Y;(1)] — E[Yi(0)]

= E[E[Y:(1) | Xi]] — E[E[Y;(0) | Xi]] (. L.L.E)

=E[E[Y;(1) | T; = 1, Xi]] — E[E[Y;(0) | T; =0, Xi]] (-." Ignorability)
=E[E[Y; | Ti = 1, X;]] = E[E[Y; | T; =0,Xi]] (.- Consistency)



Selection on Observable (2)

e When estimand is ATT,

Tarr = E[Yi(1) = Yi(0) | Tj = 1]

“E[Y,(1) | Ts = 1] - E[Y;(0) | T; = 1]

=E[Y; | T; =1] - E[Yi(0) | T; =1] (.- Consistency)

_E[Y:| T;= 1] - E[E[Yi(0) | X, Ti=1] | Ti=1] (LLE)
_E[Y; | T; = 1] - E[E[¥(0) | X;, T; = 0] | T = 1] (- Ignorability)
=E[Y;| Ti=1]—E[E[Y;| T; =0,Xj] | T; =1] (. Consistency)

e We can do the same for ATC, too



Regression Discontinuity Design
e Setup:

e T; €{0,1}: Treatment
e X;: Running variable that perfectly determines the value of T;
with the cutpoint ¢

1 IfX,ZC
TI_I{XIZC}_{O if X < c

e Estimand: Average treatment effect on the threshold

7 =E[Y;(1) - Yi(0) | Xi = (]

e Assumption: E[Y;(t) | X; = x] is continuous in x at X; = ¢ for
t=0,1

Continuity — Does not change abruptly

Formally, lim,_,c E[Y;(t) | Xi = x] = limyE[Yi(¢) | Xi = x]
Example of violation (sorting): students strategically retaking an
exam to just exceed a scholarship cutoff

Barely below and above the cutoff is no longer as-if random



Sharp RDD: Identification
Now, the estimand is 7 = E[Y;(1) — Y;(0) | Xi = ]

Then, for T, =1
E[Yi(1) | Xi =] = )!iLnCE[Y,-(l) | Xi =x] (. continuity)
= )!@CE[Y,- | Xi = x] (. consistency)
Similariy, for T; =0

E[Y;(0) | X; = c] = lim E[Y;(0) | X; = x] = lim E[Y; | X; = x]

Therefore,

7 =lmE[Y; | Xi = x] = limE[Y; | Xi = x]
xlc xtc

=E[Yi(1)|Xi=c] =E[Y;(0)|Xi=]
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Panel Data Analysis: Difference-in-Difference (1)
e Setup (for the two time period):

G;: treatment indicator (G; = 1 for treatment group)
D;; = tG;: treatment assignment indicator

Yi:: observed outcome for unit j at time t

Yie(d): potential outcome for unit / at time t

e Estimand: Average treatment effect for the treated (ATT)
7 =E[Yn(1) = Yu(0) [ G = 1]
e Assumption: Parallel trend
E[Yi1(0) — Yio(0) | Gi = 1] = E[Yj1(0) — Yio(0) | Gi = 0]
e We also assume no anticipation assumption

Yio(1) = Yio(0)
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Panel Data Analysis: Difference-in-Difference (2)

{E[Ya | G =1] —E[Yi | G; = 0]} — {E[Yio | G; =1] — E[Yio | G; = 0]}
= {E[Yi(1) | Gi =1] = E[Yi(0) | G; = 0]}

—{E[Yi0(0) | G; = 1] — E[Yi0(0) | G; = 0]}
=E[Yn(1) | Gi =1] - E[Ya(0) | G; = 1] +E[Yi1(0) | G; = 1]

= TATT

—E[Yi(0) | Gi = 0] = E[Yio(0) | Gi = 1] + E[Yi0(0) | G; = 0]

= 7ar7 + (E[Yi(0) = Yio(0) | G = 1] — E[Y;1(0) - Yo(0) | G; = 0])

=0 under parallel trends

= TATT-
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Causal Mediation Analysis / Time-varying treatment

(1)

e In the case of DiD / SCM, we care about treatment at only one
point
e We might want to consider the treatment at time 1 and 2 (i.e.,
Yi(T1 =t1, T = t))
e This is connected to causal mediation analysis

e Estimand

Controlled Direct Effect : &(m) = E[Y;(1, m) — Y;(0, m)]
Natural Indirect Effect : §(m) = E[Y;(t, Mi(1)) — Y;(t, M;(0))]
E[Yi(1, Mi(t)) — Yi(0, Mi(t))]

(
Natural Direct Effect : ((m)
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Causal Mediation Analysis / Time-varying treatment

(2)

e Assumptions for CDE: Sequential Ignorability

{Yi(t,m), M;(£')} 1L T;|X; (Treatment Uncounfoundedness)
Yi(t,m) 1L M; | Xi = x, T;, Z; (Mediator Uncounfoundedness)

e Assumptions for NIE / NDE

{Yi(t,m), Mi(t')} 1L Ti| X
Yi(t',m) 1L M;(t) | X; = x, T; (Cross-world Counterfactual)

e Importantly, we cannot have Z; for NIE / NDE

e Problem of Mediation / Time-varying Treatment: Post-treatment
bias
e Mediator is by definition post-treatment

e For CDE, the confounder for mediator can be post-treatment
14



Identification of CDE

E[Y(t, m)]

= E[E[Y(t, m) | Xi]]

=E[E[Y(t,m) | T; = t, Xi]]

= E[E[E[Y(t,m) | T; =t,X;,Z] | Ti = t, Xj]]
=E[E[E[Y(t,m)| T, =t, X;, Zi,M; = m| | T; = t, Xi]]
=E[E[E[Y | Ti=t,X,Z,Mi=m]| T; = t, Xi]]

e Make sure you understand each step!
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Identification of NDE / NIE
E[Y (¢, M(t))IX]
=D _E[Y(t,m) | X, M(t') = mP(M(t') = m| X) (. L.LE)
= iE[Y(tv m) | X, M(t') = m, T = t[P(M(t') = m | X)
= zm:E[Y(tv m) | X, T = tP(M(t') = m | X)
= Zm:E[Y(ta m) | X, T =tJP(M(t') =m | X, T =t
= zm:E[Y(ta m) | X, T =t,M(t) = m[P(M(t') = m | X, T = t')

=Y E[Y | X, T=t,M=mP(M=m|X, T =t)

e Make sure you understand each step!
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Estimation: Outcome Regression
Based on the identification formula, we propose the estimation
strategies

Strategy 1: Outcome regression, such as
E[Y; | Ti, Xl =a+ BT +9" X
Example 1 (ATE): The identification formula of ATE is given by

Tate = E|E[Y; | Ti = 1,X;] —E[Y; | T; =0, Xi]

e We can estimate each E[Y; | T; = 1, X; = x] using regression

Example 2 (ATT): Based on identification formula,
farr = E[Y; | Ti=1] —-E[E[Y; | T; =0,X] | T; = 1]
i A
=D T(Yi—-{a+3'X})
—_——

m =

E[Y;| T;i=0,Xi]

But outcome model depends on modeling assumption in the case
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Matching
e For any outcome regression model E[Y; | T; = 0, Xj] = fio(Xi), the
regression-based estimator for ATT is written as

. 1< .
TATT = [ Z Ti(Yi — (X))
i=1

e Matching is the way to find the observation under control which is
closer to treated observation; formally,

N 1 & 1
TMatching — anTI<YI_ ‘M‘ Z Yl’)
i=1 !

i"eM;

e Notice that in the case of exact matching, M; is the set of
observations with X; = X; for all i’ € M; and T;; =0
e This is why matching is the nonparametric imputation (i.e.,
reducing model dependence)
e Matching is used in many places, including panel data (panel

match)
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Weighting

Limitation of Matching

e |t can throw away many observations
e It may not be able to balance covariates

Idea: Weight each observation so that the covariate is balanced

Horvitz-Thompson estimator (a.k.a inverse probability

weighting)

12{ TY; (- T/)Y,-}

n ) ﬁ'(X,) 1-— ﬁ'(X,)
Weighting is also used in other settings, including mediation and
DiD

e Make sure that you can derive weighting estimator for each setting
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Doubly Robust Estimation (1)

e We learn two approaches to estimate causal effect: outcome model
and weighting

E[Yi(1) - Yi(0)]

E[E[Y; | T: =1, X;] — E[Y; | T: = 0, Xi]] (Outcome)
E| LY _ A=T)Y

7I'(X,') 1—7‘(‘(X,')

(weighting)

e Doubly Robust Estimator / Augmented IPW (AIPW):
Combine weighting (IPW) with outcome model so that if either
works, we can estimate causal effect

N 1. .
Tarpw = — Z(Nl(Xi) - Mo(Xi)>
i=1

i) 1—#(X)

LN (T — (X)) (1= Ti)(Yi — (X))
+n,§_:1( %) : )
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Doubly Robust Estimation (2)

e Proof Strategy:

e Check the following two cases separate;le/
e (1) correct outcome model: replace ,&tﬁ ) with E[Y; | T; = t, X{]
e (2) correct propensity score model: replace #(X;) with E[T; | Xi]

e Try Problem Set 8 Question 2 for Stat286
e Also, try practice final Question 3 (panel version of doubly robust
estimator)
e Try to show doubly robust estimator for mediation
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Proof of Double Robustness
e We only prove that the AIPW of E[Y;(1)] part is unbiased if either
propensity score model or outcome model is correctly specified.
Ti(Yi — ﬂl(Xi))]
— E[Y;(1
e [¥i()]
[Ti(Yi — (X)) < - )]
=E — [ Yi(1) — (X

Bias := E|1(X;) +

_ HE[TY: [ Xi] = (X)) : 4 o
- (B 1 X1 - )] L)
CTEITYA X = m09)  (ervrnn s vr n oy

—E P (B 1 X0 - 00 |

]E[T |X]]E[Y( )’IX] f11(X)) (E[y( )|X,]_,11(x,-))]

S| 3 v 50 )

:E(E[T’ 1)(E[Y!T—1X] a(x) )
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Approaches for Robustness Check

e In observational studies, these assumptions can often be violated

e Approach 1: Sensitivity Analysis
e The goal is still point identification
e Ask how the point estimate changes if assumptions are violated to
the certain extent
e Regression-based approach (partial R?)
e Risk-based approach (cornfield condition)
e Check section slide Module 6.5 for the derivation

e Approach 2: Partial Identification
e How much can we know with the minimal amount of assumptions
we are willing to make?
e Try problem set 7 again to check your understanding

e Approach 3: Modeling selection bias
e Heckman's selection model (see recording of Module 7)
e Note that this is based on the strong model assumption
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Partial Identification: Case of Binary Outcome (1)

e Let's think about the binary outcome and treatment. We have the
following principal strata:

(Yi(0), Yi(1)) € {(0,0),(0,1),(1,0),(1,1)}
e Suppose that we want to assign treatment to maximize the effect
Yi(1) = Yi(0)
e That is, assigning treatment to the strata (Y;(0), Yi(1)) = (0,1)
and not assigning to the strata (Y;(0), Y;(1)) = (1,0)
e The only people whose outcome is O is those in strata
(Yi(0), Yi(1)) = (0,0)

e Question: How can we maximize the outcome value by optimizing
the treatment assignment?

e If we optimally assign the treatment effect, the observed outcome
0 will be
d:=1xP(Y;(0)=1,Y;(1)=1) +1xP(Y;(0)=0,Y;(1) =1)
+1xP(Y;(0)=1,Y;(1) =0)+ 0 x P(Y;(0) =0, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (2)

e Now,
P(Yi(1) = 1) = P(Yi(0) =0,
P(Y;(0) = 1) = B(¥;(0) = 1
Identifiable

but we do not observe the probability of each principal strata.

e But we know that
5 = B(Yi(1) = 1) +B(Y;(0) = 1, ¥i(1) = 0)
—_———
Identifiable

so we need to think about how to maximize
P(Yi(0) =1,Y(1) =0)
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Partial Identification: Case of Binary Outcome (3)

o Let's write down all the constraints:
e Firstly, each probability is bounded between 0 and 1
e Then, we can identify P(Y;(1) = 1) and P(Y;(0) =1)

e In this case, each strata probability can be written as observed
quantity and P(Y;(0) =1, Y;(1) = 0). l.e.,
0<P(Y;i(0)=1,Y;(1)=0) <
0<P(Y;=1|T; =0 —-P(Y;(0)=1,Y;(1)=0) <1
=P(Y;(0)=1,Yi(1)=1)

e You can also derive P(Y;(0) =0, Yj(1) = 1) and
P(Yi(0) =0, Yi(1) = 0)

e Under these constraints, think about how much you can maximize
the quantity of interest.
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Linear programming

e Optimization problem contains two components:
e Objective function: the function to minimize / maximize
e Constraints that solution need to satisfy

e Standard approach: transform the optimization problem to the
specific form so that solver can solve automatically

e Linear programming: One form of optimization problem that can
be easily solved by solver
e Both constraint and objective function are linear

max CTX
X

such that x> 0,Ax <b
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Lee’s bounds (1)

e If outcome is not binary, the previous approach does not work
e This is exactly the setting of the practice final question 1
e Let's review how we can deal with the continuous case together

e Setup
e X;: self-reported income
e T, =1{X; > c}: treatment indicator
e whether the household is eligible for the program (c is threshold)
e Y;: outcome of interest (continuous)
e M,;: misreporting status

e Assumption:
o E[Yi(t) | X; = x, M; = 0] is continuous
e |.e.,, among those who do not misreport, continuity holds
e If X; <c, then M; =0
e No units with X; < ¢ are manipulators
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Lee’s bounds (2)

e Let fx pm(x, m) be the joint density of X = x, M = m.
e Above the cutoff, we have mixture of manipulators and
non-manipulators

f+(C) = lim fx(X) = fX7M(C, 0) + fo\//(C, 1)

xTc

while below the cutoff we only have the nonmanpulators

f_(c) == I fx(x) = fx,m(c,0)

e Therefore,

fecle.) _ fi(0) = £(0)
fi(c) fi(c)

]P)(M,:].|X,:C):
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Lee’s bounds (3)

e Now, let's think about the bounds of LATE
E[Yi(1) — Yi(0) | X; = ¢, M; =]
e As everyone below the cutoff is non-manipulator, by continuity
E[Y;(0) | Xi = ¢, M; =0] = LlTrrClE[Y, | Xi = x]
which is point identified.
e We thus need to bound
E[Yi(1) | Xi = ¢, M; = 0]

since just above the cutoff, we have mixture of manipulators and
nonmanipulators
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Lee’s bounds (4)

e However, now we know how many people are manipulators at the
cutoff; i.e.,

fo(c) = £-(c)
fr(c)

which means that 1 — p people are non-manipulators

p:IP)(M,':].’X,':C):

e We also observe the distribution of outcomes
e Ildea: Think about how to allocate these 1 — p people

e |f everyone is at the bottom of outcome distribution, we then obtain

the lower bounds
e If everyone is at the top of outcome distribtuion, we then obtain the

upper bounds
e Formally, with quantile function Q*(u) = inf{y : F*(y) > u}

1 1-p . B 1 1 N
R e A OLT ul—l_p/po(u)du
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