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Today’s Agenda

• Review of Mathematical Tools
• Probability

• Independence
• Law of Total Probability
• Bayes Rule

• Review of Class Materials
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Review of Mathematical Tools: Probability (1)
• Conditional Probability:

P(Xi = x | Yi = y) = P(Xi = x , Yi = y)
P(Yi = y)

• Law of Total Probability:
P(Xi = x) =

∑
y

P(Xi = x | Yi = y) P(Yi = y)

• This tells us that if you know joint probability P(Xi = x , Yi = y),
then you can calculate the marginal probability P(Xi = x) or
P(Yi = y) by

P(Xi = x) =
∑

y
P(Xi = x , Yi = y)

• Also, if you know conditional probability P(Xi = x | Yi = y) and
one marginal probability P(Yi = y), you can calculate the other
marginal probability P(Xi = x) by

P(Xi = x) =
∑

y
P(Xi = x | Yi = y) P(Yi = y)
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Review of Mathematical Tools: Probability (2)

• Bayes Rule:

P(Xi = x | Yi = y) = P(Yi = y | Xi = x)P(Xi = x)
P(Yi = y)

• Be familiar with them!
• Practice final question 2 requires them!
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Review of Class Materials
• Quasi-Experimental Design for Observational Data

• Selection on Observable
• Regression Discontinuity Design (RDD)
• Panel Data

• Difference-in-Difference / Synthetic Control
• Time-varying treatment / Mediation

• (Instrumental Variable)

• Different Estimation Strategies
• Outcome regression
• Matching
• Weighting
• Doubly Robust Estimation

• Robustness Check
• Sensitivity analysis
• Partial Identification
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Estimand, Identification, Estimation
• Estimand: Quantity of Interest / Target Parameter

• In this class, we are interested in counterfactual
• Example:

• ATE: E[Yi (1) − Yi (0)]
• ATT: E[Yi (1) − Yi (0) | Ti = 1]
• ATC: E[Yi (1) − Yi (0) | Ti = 0]
• CDE: E[Yi (Ti = t, Mi = m) − Yi (Ti = t ′, Mi = m)]

• Identification: Write down your estimand with respect to
observed data law

• Example: Under conditional ignorability, ATE is identified as
τ = E[E[Yi | Ti = 1, Xi ]] − E[E[Yi | Ti = 0, Xi ]]

• Estimation: Propose the estimator (the law you can calculate
from the data)

• Example: If you have outcome model µ̂(Ti , Xi), then your estimator
for ATE is

τ̂ = 1
N

N∑
i=1

{µ̂(1, Xi) − µ̂(0, Xi)}
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Selection on Observable (1)
• Assumptions

• Conditional ignorability given confounder Xi :

{Yi(1), Yi(0)} ⊥⊥ Ti | Xi

• Positivity: 0 < P(Ti = 1 | Xi = x) < 1 for any Xi = x
• Consistency: Yi(Ti) = Yi for all i

• We can identify average treatment effect nonparametrically:

τATE = E[Yi(1) − Yi(0)]
= E[Yi(1)] − E[Yi(0)]
= E[E[Yi(1) | Xi ]] − E[E[Yi(0) | Xi ]] (∵ L.I.E)
= E[E[Yi(1) | Ti = 1, Xi ]] − E[E[Yi(0) | Ti = 0, Xi ]] (∵ Ignorability)
= E[E[Yi | Ti = 1, Xi ]] − E[E[Yi | Ti = 0, Xi ]] (∵ Consistency)
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Selection on Observable (2)

• When estimand is ATT,

τATT = E[Yi(1) − Yi(0) | Ti = 1]
= E[Yi(1) | Ti = 1] − E[Yi(0) | Ti = 1]
= E[Yi | Ti = 1] − E[Yi(0) | Ti = 1] (∵ Consistency)
= E[Yi | Ti = 1] − E[E[Yi(0) | Xi , Ti = 1] | Ti = 1] (∵ L.I.E)
= E[Yi | Ti = 1] − E[E[Yi(0) | Xi , Ti = 0] | Ti = 1] (∵ Ignorability)
= E[Yi | Ti = 1] − E[E[Yi | Ti = 0, Xi ] | Ti = 1] (∵ Consistency)

• We can do the same for ATC, too
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Regression Discontinuity Design
• Setup:

• Ti ∈ {0, 1}: Treatment
• Xi : Running variable that perfectly determines the value of Ti

with the cutpoint c

Ti = 1{Xi ≥ c} =
{

1 if Xi ≥ c
0 if Xi < c

• Estimand: Average treatment effect on the threshold

τ = E[Yi(1) − Yi(0) | Xi = c]

• Assumption: E[Yi(t) | Xi = x ] is continuous in x at Xi = c for
t = 0, 1

• Continuity → Does not change abruptly
• Formally, limx→c E[Yi(t) | Xi = x ] = limx←c E[Yi(t) | Xi = x ]
• Example of violation (sorting): students strategically retaking an

exam to just exceed a scholarship cutoff
• Barely below and above the cutoff is no longer as-if random
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Sharp RDD: Identification
• Now, the estimand is τ = E[Yi(1) − Yi(0) | Xi = c]

• Then, for Ti = 1

E[Yi(1) | Xi = c] = lim
x←c

E[Yi(1) | Xi = x ] (∵ continuity)

= lim
x←c

E[Yi | Xi = x ] (∵ consistency)

• Similariy, for Ti = 0

E[Yi(0) | Xi = c] = lim
x→c

E[Yi(0) | Xi = x ] = lim
x→c

E[Yi | Xi = x ]

• Therefore,

τ = lim
x↓c

E[Yi | Xi = x ]︸ ︷︷ ︸
=E[Yi (1)|Xi =c]

− lim
x↑c

E[Yi | Xi = x ]︸ ︷︷ ︸
=E[Yi (0)|Xi =c]
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Panel Data Analysis: Difference-in-Difference (1)
• Setup (for the two time period):

• Gi : treatment indicator (Gi = 1 for treatment group)
• Dit = tGi : treatment assignment indicator
• Yit : observed outcome for unit i at time t
• Yit(d): potential outcome for unit i at time t

• Estimand: Average treatment effect for the treated (ATT)

τ = E[Yi1(1) − Yi1(0) | Gi = 1]

• Assumption: Parallel trend

E[Yi1(0) − Yi0(0) | Gi = 1] = E[Yi1(0) − Yi0(0) | Gi = 0]

• We also assume no anticipation assumption

Yi0(1) = Yi0(0)
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Panel Data Analysis: Difference-in-Difference (2)

{E[Yi1 | Gi = 1] − E[Yi1 | Gi = 0]} − {E[Yi0 | Gi = 1] − E[Yi0 | Gi = 0]}
= {E[Yi1(1) | Gi = 1] − E[Yi1(0) | Gi = 0]}

− {E[Yi0(0) | Gi = 1] − E[Yi0(0) | Gi = 0]}
= E[Yi1(1) | Gi = 1] − E[Yi1(0) | Gi = 1]︸ ︷︷ ︸

= τATT

+E[Yi1(0) | Gi = 1]

− E[Yi1(0) | Gi = 0] − E[Yi0(0) | Gi = 1] + E[Yi0(0) | Gi = 0]

= τATT +
(
E[Yi1(0) − Yi0(0) | Gi = 1] − E[Yi1(0) − Yi0(0) | Gi = 0]

)
︸ ︷︷ ︸

=0 under parallel trends

= τATT .
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Causal Mediation Analysis / Time-varying treatment
(1)

• In the case of DiD / SCM, we care about treatment at only one
point

• We might want to consider the treatment at time 1 and 2 (i.e.,
Yi(T1 = t1, T2 = t2))

• This is connected to causal mediation analysis

• Estimand

Controlled Direct Effect : ξ̄(m) = E[Yi(1, m) − Yi(0, m)]
Natural Indirect Effect : δ̄(m) = E[Yi(t, Mi(1)) − Yi(t, Mi(0))]

Natural Direct Effect : ζ̄(m) = E[Yi(1, Mi(t)) − Yi(0, Mi(t))]
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Causal Mediation Analysis / Time-varying treatment
(2)

• Assumptions for CDE: Sequential Ignorability

{Yi(t, m), Mi(t ′)} ⊥⊥ Ti | Xi (Treatment Uncounfoundedness)
Yi(t, m) ⊥⊥ Mi | Xi = x , Ti , Zi (Mediator Uncounfoundedness)

• Assumptions for NIE / NDE

{Yi(t, m), Mi(t ′)} ⊥⊥ Ti | Xi

Yi(t ′, m) ⊥⊥ Mi(t) | Xi = x , Ti (Cross-world Counterfactual)

• Importantly, we cannot have Zi for NIE / NDE

• Problem of Mediation / Time-varying Treatment: Post-treatment
bias

• Mediator is by definition post-treatment
• For CDE, the confounder for mediator can be post-treatment
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Identification of CDE

E[Y (t, m)]
= E[E[Y (t, m) | Xi ]]
= E[E[Y (t, m) | Ti = t, Xi ]]
= E[E[E[Y (t, m) | Ti = t, Xi , Zi ] | Ti = t, Xi ]]
= E[E[E[Y (t, m) | Ti = t, Xi , Zi , Mi = m] | Ti = t, Xi ]]
= E[E[E[Y | Ti = t, Xi , Zi , Mi = m] | Ti = t, Xi ]]

• Make sure you understand each step!

15



Identification of NDE / NIE

E[Y (t, M(t ′))|X ]
=

∑
m

E[Y (t, m) | X , M(t ′) = m]P(M(t ′) = m | X ) (∵ L.I.E.)

=
∑
m

E[Y (t, m) | X , M(t ′) = m, T = t ′]P(M(t ′) = m | X )

=
∑
m

E[Y (t, m) | X , T = t ′]P(M(t ′) = m | X )

=
∑
m

E[Y (t, m) | X , T = t]P(M(t ′) = m | X , T = t ′)

=
∑
m

E[Y (t, m) | X , T = t, M(t) = m]P(M(t ′) = m | X , T = t ′)

=
∑
m

E[Y | X , T = t, M = m]P(M = m | X , T = t ′)

• Make sure you understand each step!
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Estimation: Outcome Regression
• Based on the identification formula, we propose the estimation

strategies
• Strategy 1: Outcome regression, such as

E[Yi | Ti , Xi ] = α + βTi + γ⊤Xi

• Example 1 (ATE): The identification formula of ATE is given by

τATE = E
[
E[Yi | Ti = 1, Xi ] − E[Yi | Ti = 0, Xi ]

]
• We can estimate each E[Yi | Ti = 1, Xi = x ] using regression

• Example 2 (ATT): Based on identification formula,

τ̂ATT = ̂E[Yi | Ti = 1] − ̂E[E[Yi | Ti = 0, Xi ] | Ti = 1]

= 1
n1

n∑
i=1

Ti(Yi − {α̂ + γ̂⊤Xi}︸ ︷︷ ︸
̂E[Yi |Ti =0,Xi ]

)

• But outcome model depends on modeling assumption in the case
of observational studies
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Matching
• For any outcome regression model E[Yi | Ti = 0, Xi ] = µ̂0(Xi), the

regression-based estimator for ATT is written as

τ̂ATT = 1
n1

n∑
i=1

Ti(Yi − µ̂0(Xi))

• Matching is the way to find the observation under control which is
closer to treated observation; formally,

τ̂Matching = 1
n1

n∑
i=1

Ti

(
Yi − 1

|Mi |
∑

i ′∈Mi

Yi ′

)

• Notice that in the case of exact matching, Mi is the set of
observations with Xi′ = Xi for all i ′ ∈ Mi and Ti′ = 0

• This is why matching is the nonparametric imputation (i.e.,
reducing model dependence)

• Matching is used in many places, including panel data (panel
match)

18



Weighting

• Limitation of Matching
• It can throw away many observations
• It may not be able to balance covariates

• Idea: Weight each observation so that the covariate is balanced
• Horvitz-Thompson estimator (a.k.a inverse probability

weighting)
1
n

n∑
i=1

{ TiYi
π̂(Xi)

− (1 − Ti)Yi
1 − π̂(Xi)

}
• Weighting is also used in other settings, including mediation and

DiD
• Make sure that you can derive weighting estimator for each setting
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Doubly Robust Estimation (1)
• We learn two approaches to estimate causal effect: outcome model

and weighting

E[Yi(1) − Yi(0)]

=


E[E[Yi | Ti = 1, Xi ] − E[Yi | Ti = 0, Xi ]] (Outcome)

E
[

Ti Yi
π(Xi ) − (1−Ti )Yi

1−π(Xi )

]
(weighting)

• Doubly Robust Estimator / Augmented IPW (AIPW):
Combine weighting (IPW) with outcome model so that if either
works, we can estimate causal effect

τ̂AIPW = 1
n

n∑
i=1

(
µ̂1(Xi) − µ̂0(Xi)

)

+ 1
n

n∑
i=1

(Ti(Yi − µ̂1(Xi))
π̂(Xi)

− (1 − Ti)(Yi − µ̂0(Xi))
1 − π̂(Xi)

)
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Doubly Robust Estimation (2)

• Proof Strategy:
• Check the following two cases separately
• (1) correct outcome model: replace µ̂t(Xi ) with E[Yi | Ti = t, Xi ]
• (2) correct propensity score model: replace π̂(Xi ) with E[Ti | Xi ]

• Try Problem Set 8 Question 2 for Stat286
• Also, try practice final Question 3 (panel version of doubly robust

estimator)
• Try to show doubly robust estimator for mediation
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Proof of Double Robustness
• We only prove that the AIPW of E[Yi(1)] part is unbiased if either

propensity score model or outcome model is correctly specified.

Bias := E
[
µ̂1(Xi) + Ti(Yi − µ̂1(Xi))

π̂(Xi)

]
− E[Yi(1)]

= E
[Ti(Yi − µ̂1(Xi))

π̂(Xi)
−

(
Yi(1) − µ̂1(Xi)

)]
= E

[E[TiYi | Xi ] − µ̂1(Xi))
π̂(Xi)

−
(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
(L.I.E)

= E
[E[TiYi(1) | Xi ] − µ̂1(Xi))

π̂(Xi)
−

(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
= E

[E[Ti | Xi ]E[Yi(1) | Xi ] − µ̂1(Xi))
π̂(Xi)

−
(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
= E

[(E[Ti | Xi ]
π̂(Xi)

− 1
)(

E[Yi(1) | Xi ] − µ̂1(Xi)
)]

= E
[(E[Ti | Xi ]

π̂(Xi)
− 1

)(
E[Yi | Ti = 1, Xi ] − µ̂1(Xi)

)]
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Approaches for Robustness Check
• In observational studies, these assumptions can often be violated

• Approach 1: Sensitivity Analysis
• The goal is still point identification
• Ask how the point estimate changes if assumptions are violated to

the certain extent
• Regression-based approach (partial R2)
• Risk-based approach (cornfield condition)
• Check section slide Module 6.5 for the derivation

• Approach 2: Partial Identification
• How much can we know with the minimal amount of assumptions

we are willing to make?
• Try problem set 7 again to check your understanding

• Approach 3: Modeling selection bias
• Heckman’s selection model (see recording of Module 7)
• Note that this is based on the strong model assumption
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Partial Identification: Case of Binary Outcome (1)
• Let’s think about the binary outcome and treatment. We have the

following principal strata:

(Yi(0), Yi(1)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

• Suppose that we want to assign treatment to maximize the effect
Yi(1) − Yi(0)

• That is, assigning treatment to the strata (Yi(0), Yi(1)) = (0, 1)
and not assigning to the strata (Yi(0), Yi(1)) = (1, 0)

• The only people whose outcome is 0 is those in strata
(Yi(0), Yi(1)) = (0, 0)

• Question: How can we maximize the outcome value by optimizing
the treatment assignment?

• If we optimally assign the treatment effect, the observed outcome
δ will be
δ :=1 × P(Yi(0) = 1, Yi(1) = 1) + 1 × P(Yi(0) = 0, Yi(1) = 1)

+ 1 × P(Yi(0) = 1, Yi(1) = 0) + 0 × P(Yi(0) = 0, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (2)

• Now,

P(Yi(1) = 1) = P(Yi(0) = 0, Yi(1) = 1) + P(Yi(0) = 1, Yi(1) = 1)
P(Yi(0) = 1)︸ ︷︷ ︸

Identifiable

= P(Yi(0) = 1, Yi(1) = 0) + P(Yi(0) = 1, Yi(1) = 1)

but we do not observe the probability of each principal strata.

• But we know that

δ = P(Yi(1) = 1)︸ ︷︷ ︸
Identifiable

+P(Yi(0) = 1, Yi(1) = 0)

so we need to think about how to maximize
P(Yi(0) = 1, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (3)
• Let’s write down all the constraints:

• Firstly, each probability is bounded between 0 and 1
• Then, we can identify P(Yi(1) = 1) and P(Yi(0) = 1)

• In this case, each strata probability can be written as observed
quantity and P(Yi(0) = 1, Yi(1) = 0). I.e.,

0 ≤ P(Yi(0) = 1, Yi(1) = 0) ≤ 1
0 ≤ P(Yi = 1 | Ti = 0) − P(Yi(0) = 1, Yi(1) = 0)︸ ︷︷ ︸

=P(Yi (0)=1,Yi (1)=1)

≤ 1

• You can also derive P(Yi(0) = 0, Yi(1) = 1) and
P(Yi(0) = 0, Yi(1) = 0)

• Under these constraints, think about how much you can maximize
the quantity of interest.
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Linear programming

• Optimization problem contains two components:
• Objective function: the function to minimize / maximize
• Constraints that solution need to satisfy

• Standard approach: transform the optimization problem to the
specific form so that solver can solve automatically

• Linear programming: One form of optimization problem that can
be easily solved by solver

• Both constraint and objective function are linear

max
x

c⊤x

such that x ≥ 0, Ax ≤ b
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Lee’s bounds (1)

• If outcome is not binary, the previous approach does not work
• This is exactly the setting of the practice final question 1
• Let’s review how we can deal with the continuous case together

• Setup
• Xi : self-reported income
• Ti = 1{Xi ≥ c}: treatment indicator

• whether the household is eligible for the program (c is threshold)
• Yi : outcome of interest (continuous)
• Mi : misreporting status

• Assumption:
• E[Yi(t) | Xi = x , Mi = 0] is continuous

• I.e., among those who do not misreport, continuity holds
• If Xi < c, then Mi = 0

• No units with Xi < c are manipulators
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Lee’s bounds (2)

• Let fX ,M(x , m) be the joint density of X = x , M = m.
• Above the cutoff, we have mixture of manipulators and

non-manipulators

f+(c) := lim
x↑c

fX (x) = fX ,M(c, 0) + fX ,M(c, 1)

while below the cutoff we only have the nonmanpulators

f−(c) := lim
x↓c

fX (x) = fX ,M(c, 0)

• Therefore,

P(Mi = 1 | Xi = c) = fX ,C (c, 1)
f+(c) = f+(c) − f−(c)

f+(c)
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Lee’s bounds (3)

• Now, let’s think about the bounds of LATE

E
[
Yi(1) − Yi(0) | Xi = c, Mi = 0

]
• As everyone below the cutoff is non-manipulator, by continuity

E
[
Yi(0) | Xi = c, Mi = 0

]
= lim

x↑c
E[Yi | Xi = x ]

which is point identified.
• We thus need to bound

E
[
Yi(1) | Xi = c, Mi = 0

]
since just above the cutoff, we have mixture of manipulators and
nonmanipulators
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Lee’s bounds (4)
• However, now we know how many people are manipulators at the

cutoff; i.e.,

p = P(Mi = 1 | Xi = c) = f+(c) − f−(c)
f+(c)

which means that 1 − p people are non-manipulators
• We also observe the distribution of outcomes
• Idea: Think about how to allocate these 1 − p people

• If everyone is at the bottom of outcome distribution, we then obtain
the lower bounds

• If everyone is at the top of outcome distribtuion, we then obtain the
upper bounds

• Formally, with quantile function Q+(u) = inf{y : F +(y) ≥ u}

µ1 = 1
1 − p

∫ 1−p

0
Q+(u) du, µ1 = 1

1 − p

∫ 1

p
Q+(u) du
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