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Logistics

• Important Dates
• Problem Set 8: Due Next Monday (Nov 24th)
• Problem Set 9: Due December 1st
• Problem Set 10: Due December 8th
• Review Session: December 8th (CGIS K354)
• Final Exam: December 11th

• Today’s agenda (so many topics!)
• Flexible Weighting

• Covariate Balancing Propensity Score
• Calibration Method

• Causal Machine Learning
• Causal Mediation Analysis

• Controlled Direct Effect
• Natural Direct / Indirect Effect
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Toward Better Estimation of Propensity Score

• Recall from the last week that both HT and Hajek estimators
require estimation of propensity score

• However, if propensity score is misspecified, we have the bias

• Three different approaches (next week)
1. Covariate Balancing Propensity Score (CBPS)
• Estimate propensity score s.t. we achieve balance
• But still assume parametric assumption on propensity score function
2. Calibration: Entropy Balancing / Stable Weights
• Estimate weight so that we achieve balance
• We no longer estimate propensity score
3. Causal Machine Learning / Semiparametric Estimation
• Flexibly estimate propensity score / outcome models
• Relax parametric assumption as much as possible
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Covariate Balancing Propensity Score (1)
• Think about the estimation of propensity score model

• Popular choice is logistic regression with parameter θ:

πθ(Xi) = exp(X⊤
i θ)

1 + exp(X⊤
i θ)

• Recall that the log likelihood of logistic regression model is

ℓ(θ) =
n∑

i=1

(
Ti log πθ(Xi) + (1 − Ti) log(1 − πθ(Xi))

)

• To obtain MLE, we want to maximize the log likelihood. The first
order condition is written as

∂

∂θ
ℓ(θ) = 1

n

n∑
i=1

( Ti
πθ(Xi)

− 1 − Ti
1 − πθ(Xi)

)
∂

∂θ
πθ(Xi)︸ ︷︷ ︸

:=π′
θ
(Xi )

= 0
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Covariate Balancing Propensity Score (2)
• The first order condition can be re-written as

1
n

n∑
i=1

Ti
πθ(Xi)

π′
θ(Xi) = 1

n

n∑
i=1

1 − Ti
1 − πθ(Xi)

π′
θ(Xi)

which can be interpreted as “balancing π′
θ(Xi)”

• We can instead directly balance covariates rather than π′
θ(Xi)

1
n

n∑
i=1

Ti
πθ(Xi)

Xi = 1
n

n∑
i=1

1 − Ti
1 − πθ(Xi)

Xi

• Then, even if propensity score is misspecified, as long as the
estimated model balances the covariates, we are fine

• The condition above only balances the first moment (expectation)
• We can balance the higher moments too.
• Think as modeling balancing score using a parametric model

• BUT still we use parametric model πθ(Xi)!
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Calibration Method: Entropy Balancing
• Idea: Without estimating propensity score model, we just want to

learn the weight that balances the covariates

• Entropy balancing: Find the weight that matches the moment
exactly

min
wi

∑
i :Ti =0

wi log wi
qi

s.t.
∑

i :Ti =0
wi f (Xi) = 1

n1

∑
i :Ti =1

f (Xi)∑
i :Ti =0

wi = 1, wi ≥ 0

• Each unit has different weight
• More flexible, no direct modeling of propensity score
• However, in reality we can balance only the finite dimensional

moment (i.e., cannot directly balance two distributions without
assumptions)

• If there is imbalances in higher moments which are not in
optimization problem, we suffer from bias

• Thus, calibration method is in some sense still parametric 6



Doubly Robust Estimation
• We learn two approaches to estimate causal effect: outcome model

and weighting
E[Yi(1) − Yi(0)]

=


E[E[Yi | Ti = 1,Xi ] − E[Yi | Ti = 0,Xi ]] (Outcome)

E
[

Ti Yi
π(Xi ) − (1−Ti )Yi

1−π(Xi )

]
(weighting)

• Doubly Robust Estimator / Augmented IPW (AIPW):
Combine weighting (IPW) with outcome model so that if either
works, we can estimate causal effect

τ̂AIPW = 1
n

n∑
i=1

(
µ̂1(Xi) − µ̂0(Xi)

)

+ 1
n

n∑
i=1

(Ti(Yi − µ̂1(Xi))
π̂(Xi)

− (1 − Ti)(Yi − µ̂0(Xi))
1 − π̂(Xi)

)
• It turns out that AIPW can be used for machine learning
• Try Problem Set 8 Question 2 for Stat286 before taking final
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Proof of Double Robustness
• We only prove that the AIPW of E[Yi(1)] part is unbiased if either

propensity score model or outcome model is correctly specified.

Bias := E
[
µ̂1(Xi) + Ti(Yi − µ̂1(Xi))

π̂(Xi)

]
− E[Yi(1)]

= E
[Ti(Yi − µ̂1(Xi))

π̂(Xi)
−

(
Yi(1) − µ̂1(Xi)

)]
= E

[E[TiYi | Xi ] − µ̂1(Xi))
π̂(Xi)

−
(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
(L.I.E)

= E
[E[TiYi(1) | Xi ] − µ̂1(Xi))

π̂(Xi)
−

(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
= E

[E[Ti | Xi ]E[Yi(1) | Xi ] − µ̂1(Xi))
π̂(Xi)

−
(
E[Yi(1) | Xi ] − µ̂1(Xi)

)]
= E

[(E[Ti | Xi ]
π̂(Xi)

− 1
)(

E[Yi(1) | Xi ] − µ̂1(Xi)
)]

= E
[(E[Ti | Xi ]

π̂(Xi)
− 1

)(
E[Yi | Ti = 1,Xi ] − µ̂1(Xi)

)]
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Machine Learning: Quick Overview (1)

• Linear regression has many problems
• Restrictive parametric assumptions
• Often does not work in the case of high-dimensional covariates

• To obtain β̂ = (X ⊤X)−1X ⊤Y , we need to obtain the inverse of
X ⊤X .

• It is not possible under perfect collinenarity

• We want to use machine learning to flexible model the
high-dimensional confounding variables

• Why Machine Learning?
• Flexible (little parametric assumptions)
• Handle many confounding variables effectively
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Machine Learning: Quick Overview (2)

• In many cases, the algorithm is designed to better predict the new
points

• It is not designed for statistical inference of the parameter

• Rather than bias, we often care about MSE (mean squared error)
• Bias-Variance Trade-off

E
[
(y − f̂ (x))2

]
︸ ︷︷ ︸

MSE

=
(
E[f̂ (x)] − f (x)

)2

︸ ︷︷ ︸
Bias2

+ V
[
f̂ (x)

]
︸ ︷︷ ︸

Variance

+ V[ε]︸︷︷︸
Irreducible noise

• Intiutively, bias refers to underfitting whereas variance refers to
overfitting

• We want to use regularization to achieve this to some extent
• Regularization: introduce bias but minimize variance
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Example: Ridge Regression

• The optimization problem is written as

β̂ridge = arg min
β

{||Yi − Xβ||22 + λ||β||22}

• The closed form solution is given by

β̂ridge = (X⊤X + λIn)−1X⊤Y

• This makes (X⊤X + λIn)−1 always invertible

• Ridge regression is biased unless λ = 0 since

E[β̂ridge | X ] = (X⊤X + λIn)−1X⊤E[Y | X ]
= {(X⊤X + λIn)−1X⊤X}β
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Causal Machine Learning
• But these MLs are designed to predict the outcome well, rather

than estimating the parameter

• Thus, we might want to regard each ML model Ŷ = f̂ (X ), and
using these ML model as a nuisance parameter (i.e., we do not
interpret), we want to estimate low-dimensional interpretable
parameter (e.g., ATE, ATT)

• Challenge of using ML for Causal Inference
1. Regularization Bias: ML model is biased
2. Overfitting: Too flexible

• Goal: You want the way to overcome these two challenges and get
confidence interval under the realistic condition

• We aim to derive asymptotic variance
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Recap: Tools for Asymptotic Variance

• Law of Large Numbers (LLN): If X1, · · · ,Xn are i.i.d.,

X̄ = 1
n

n∑
i=1

Xi
p−→ E[Xi ]

• Central Limit Theorem (CLT): If X1, · · · ,Xn are i.i.d.,
√

n(X̄ − E[Xi ])
d−→ N (0,V[Xi ])

• Slutsky’s Lemma: If Xn
d−→ X for some random variable X and

Yn
p−→ c for some constant c,

XnYn
d−→ cX
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Taylor Expansion Viewpoint
• Think about the moment-based estimator that depends on both

parameter of interest β and nuisance function η, denoted as
m(β, η)

• For regression: m(β) = E[Xi(Yi − Xβ)] = 0
• You obtain the estimator β̂n as a solution of sample moment

m̂n(β̂n) = 1
n

∑
i Xi(Yi − X β̂n) = 0

• Recall that Taylor expansion gives you

f (x + h) = f (x) + ∇f (x)⊤h + 1
2h⊤H(x)h + · · ·

• With the (functional version of) Taylor expansion of sample
moment mn(Xi ; β̂n, η̂n) around true parameter (β0, η0),

mn(β̂n,η̂n) = mn(Xi ;β0, η0) + ∂mn(Xi ;β, η)
∂β

∣∣∣∣
β=β0

(β̂n − β0)

+ ∂mn(Xi ;β, η)
∂η

∣∣∣∣
η=η0

(η̂n − η0) + Reminder Term
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Neyman Orthogonality
• Thus, if we can ignore the reminder term, as mn(β̂n, η̂n) = 0,

√
n(β̂n − β0) =

√
n

[
∂mn(β, η)

∂β

∣∣∣∣
β=β0

]−1
mn(β0, η0)

+
√

n
[
∂mn(β, η)

∂β

∣∣∣∣
β=β0

]−1 ∂mn(β, η)
∂η

∣∣∣∣
η=η0

(η̂n − η0)︸ ︷︷ ︸
Estimation Error of Nuisance Functions

• From the case of ridge regression, we learn that η̂n − η0 ̸= 0 in the
case of machine learning due to regularization

• If ∂mn(β,η)
∂η

∣∣∣∣
η=η0

= 0, then the second term in the above equation

becomes 0
• In other words, our estimator β̂n becomes not sensitive to the

estimation error from nuisance functions η̂n − η0
• This is called Neyman Orthogonality
• We thus need to use mn(Xi ;β0, η0) that satisfies Neyman

orthogonality 15



Asymptotic Normality (1)
• Motivation: We want to obtain the asymptotic normality

• To derive asymptotic normality, we want to use CLT
• To use central limit theorem, we need the average

• Suppose that mn(β0, η0) = 1
n

∑n
i=1 ψ(Xi , β0, η0)

• In the case of OLS, ψ(Xi , β0) = Xi(Yi − Xβ0)
• Notice that E[ψ(Xi , β0, η0)] = 0

• If our mn(β0, η0) satisfies Neyman orthogonality, then

√
n(β̂n − β0) =

[
∂mn(β, η)

∂β

∣∣∣∣
β=β0

]−1√
n

(1
n

n∑
i=1

ψ(Xi , β0, η0)
)

• By central limit theorem, we can obtain

√
n

(1
n

n∑
i=1

ψ(Xi , β0, η0)
)

d−→ N (0,E[ψ(Xi , β0, η0)2])
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Asymptotic Normality (2)

• Thus, as mn(β0, η0) p−→ m(β0, η0) (by LLN), we have[
∂mn(β, η)

∂β

∣∣∣∣
β=β0

]
p−→ ∂βE[m(β0, η0)]

• Therefore, by Slutsky’s lemma, we finally obtain

√
n(β̂n − β0) =

[
∂mn(β, η)

∂β

∣∣∣∣
β=β0

]−1√
n

(1
n

n∑
i=1

ψ(Xi , β0, η0)
)

d−→ N
(

0, E[ψ(Xi , β0, η0)2]
∂βE[m(β0, η0)]

)
which corresponds to the lecture slide p.6

17



Influence Function
• The previous page derivation gives you the motivation of influence

function

• In order to obtain the asymptotic distribution of β̂, we want some
function ψ s.t.

√
n(β̂ − β) = 1√

n

n∑
i=1

ψ(Xi), E[ψ(Xi)] = 0

• If we obtain such ψ(Xi), then we can apply CLT and obtain
√

n(β̂ − β) d−→ N (0,E[ψ(Xi)2])

• Such ψ(Xi) is called Influence function
• There are many influence function
• The one that attains the minimum is called efficient influence

function

• Takeaway: Influence function is a nice object for us to derive
asymptotic normality
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Causal Mediation Analysis: Overview
• Estimand

Controlled Direct Effect : ξ̄(m) = E[Yi(1,m) − Yi(0,m)]
Natural Indirect Effect : δ̄(m) = E[Yi(t,Mi(1)) − Yi(t,Mi(0))]

Natural Direct Effect : ζ̄(m) = E[Yi(1,Mi(t)) − Yi(0,Mi(t))]

• NIE / NDE has effect decomposition

Average Treatment Effect︷ ︸︸ ︷
E[Yi(1,Mi(1)) − Yi(0,Mi(0))]

=


E[Yi(1,Mi(1)) − Yi(1,Mi(0))]︸ ︷︷ ︸

Natural Indirect Effect

+E[Yi(1,Mi(0)) − Yi(0,Mi(0))]︸ ︷︷ ︸
Natural Direct Effect

E[Yi(1,Mi(1)) − Yi(0,Mi(1))]︸ ︷︷ ︸
Natural Direct Effect

+E[Yi(0,Mi(1)) − Yi(0,Mi(0))]︸ ︷︷ ︸
Natural Indirect Effect
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Controlled Direct Effect: Assumptions

• Identification Assumption: Sequential Ignorability
{Yi(t,m),Mi(t ′)} ⊥⊥ Ti | Xi (Treatment Uncounfoundedness)
Yi(t,m) ⊥⊥ Mi | Xi = x ,Ti ,Zi (Mediator Uncounfoundedness)

• Even under experiment, mediator unconfoundedness is difficult
• As a result, people use them with sensitivity analysis

• However, if we simply run regression controlling Mi and Zi , we
suffer from post-treatment bias

• Thus, under this assumption, new strategies are needed
• They are called Structural Nested Mean Model / Marginal

Structural Model
• Note that they are also used for time-varying treatment /

longitudinal studies (where you think Yi(T1,T2,T3, · · · ))
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Structural Nested Mean Model (SNMM) (1)
• For simplicity, let’s assume no intermediate interaction

E[Yi(t,m) − Yi(t,m′) | Xi ,Ti ,Zi ]
= E[Yi(t,m) − Yi(t,m′) | Xi ,Ti ]

• Structural nested mean model assumes that the conditional
expectation of potential outcome is written as

E[Yi(t,m) | Xi ] = E[Yi(t, 0) | Xi ] + γ(t,m,Xi)

where γ is called blip function

γ(t,m, x) := E[Yi(t,m) − Yi(t, 0) | Xi = x ]

• With sequential ignorability and no intermediate interaction,

E[Yi − γ(t,Mi , x) | Ti = t,Xi = x ] = E[Yi(t, 0) | Xi = x ]

• Therefore,
E[Yi(t, 0) − Yi(0, 0) |Xi = x ] = E[Yi − γ(t,Mi , x) | Ti = t,Xi = x ]

− E[Yi − γ(0,Mi , x) | Ti = 0,Xi = x ]
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Structural Nested Mean Model (SNMM) (2)
• Then, blip function is identified under sequential ignorability as

γ(t,m, x) = E[Yi | Ti = t,Mi = m,Xi = x ,Zi = z ]
− E[Yi | Ti = t,Mi = 0,Xi = x ,Zi = z ]

• Estimation Procedure (Sequential G-Estimation):
• STEP1: Run first stage regression

E[Yi | Ti ,Mi ,Xi ,Zi ] = α0 + α1Ti + α2Mi + α3Xi + α4Zi

and obtain blip function as γ(t,m, x) = α2m
• Note that you can make blip function more complex (e.g., w/

interaction)
• STEP2: Using the blip function, estimate

E[Yi − γ(t,Mi , x) | Ti ,Xi ] = β0 + β1Ti + β2Xi

and interpret β1 as CDE.

• Intuition: SNMM avoids collider-bias by not conditioning on Mi
and Zi directly

• Blip function models the effect of switching mediator values
22



Marginal Structural Model (MSM)
• Problem of SNMM: need to correctly specify the blip function

• Misspecification of blip function can lead to bias

• Marginal Structural Model1: Assume that the marginal mean of
potential outcome is written as

E[Yi(t,m)] = g(t,m;β)

• Importantly, it is marginal, meaning that we do not condition on Mi
and Zi → no collider bias

• We use weighting to estimate marginal structural model
• Intuitively, at each point (Ti and Mi separately), we use weight so

that we can recover potential outcome without directly conditioning
on post-treatment at each time point

1For both MSM and SNMM, "Structural" means modeling the relationship
between potential outcome and treatment directly. As a result, the parameter of
structural model is not a nuisance parameter.
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Natural Direct Effect: Assumptions

• Identification Assumption

{Yi(t,m),Mi(t ′)} ⊥⊥ Ti | Xi

Yi(t ′,m) ⊥⊥ Mi(t) | Xi = x ,Ti (Cross-world Counterfactual)

• Note that this is stronger than CDE
• Assume no intermediate variable Zi
• Cross-world Counterfactual

• Look at Question 2 of Review Question for module 9
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Natural Direct Effect: Identification

E[Y (t,M(t ′))|X ]
=

∑
m

E[Y (t,m) | X ,M(t ′) = m]P(M(t ′) = m | X ) (∵ L.I.E.)

=
∑
m

E[Y (t,m) | X ,M(t ′) = m,T = t]P(M(t ′) = m | X )

=
∑
m

E[Y (t,m) | X ,T = t]P(M(t ′) = m | X ,T = t ′)

=
∑
m

E[Y (t,m) | X ,T = t,M(t) = m]P(M(t ′) = m | X ,T = t ′)

=
∑
m

E[Y | X ,T = t,M = m]P(M = m | X ,T = t ′)

25


