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Logistics

e Important Dates

e Problem Set 8: Due Next Monday (Nov 24th)
Problem Set 9: Due December 1st
Problem Set 10: Due December 8th
Review Session: December 8th (CGIS K354)
Final Exam: December 11th

e Today's agenda (so many topics!)

e Flexible Weighting
e Covariate Balancing Propensity Score
e Calibration Method

e Causal Machine Learning

e Causal Mediation Analysis
e Controlled Direct Effect
e Natural Direct / Indirect Effect



Toward Better Estimation of Propensity Score

e Recall from the last week that both HT and Hajek estimators
require estimation of propensity score

e However, if propensity score is misspecified, we have the bias

e Three different approaches (next week)
1. Covariate Balancing Propensity Score (CBPS)
e Estimate propensity score s.t. we achieve balance
But still assume parametric assumption on propensity score function
2. Calibration: Entropy Balancing / Stable Weights
Estimate weight so that we achieve balance
We no longer estimate propensity score
Causal Machine Learning / Semiparametric Estimation
Flexibly estimate propensity score / outcome models
Relax parametric assumption as much as possible
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Covariate Balancing Propensity Score (1)
Think about the estimation of propensity score model

Popular choice is logistic regression with parameter 6:

exp(X; 0)

X)= —2 i
o) 1+ exp(X/ 0)

Recall that the log likelihood of logistic regression model is

n

00) = Z(T,- log o (X;) + (1 — T;)log(1 — m)(x,-)))

i=1

To obtain MLE, we want to maximize the log likelihood. The first
order condition is written as
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Covariate Balancing Propensity Score (2)
The first order condition can be re-written as

1 T, 1 1T,
=3 (X)) = =S (X,
n;m(x,-)”@( ) n§1—7re(x,-)”9( )

which can be interpreted as “balancing mj(X;)

We can instead directly balance covariates rather than 7j(X;)

1< T; 1K 1-T;
E;m(x,) ’_ngl—m(x,-)

Xi

Then, even if propensity score is misspecified, as long as the
estimated model balances the covariates, we are fine
e The condition above only balances the first moment (expectation)
e We can balance the higher moments too.
e Think as modeling balancing score using a parametric model

BUT still we use parametric model 7y(X;)!



Calibration Method: Entropy Balancing

e ldea: Without estimating propensity score model, we just want to
learn the weight that balances the covariates

e Entropy balancing: Find the weight that matches the moment
exactly

. w;
min Z w; log —
Wi i: T;=0 gi
1
s.t. Z W,f(X,) = — Z f(X,)
i T=0 M ;121

ZW,':]_, W,'ZO

i:T;=0
e Each unit has different weight

More flexible, no direct modeling of propensity score

However, in reality we can balance only the finite dimensional
moment (i.e., cannot directly balance two distributions without
assumptions)

If there is imbalances in higher moments which are not in
optimization problem, we suffer from bias

Thus, calibration method is in some sense still parametric



Doubly Robust Estimation

e We learn two approaches to estimate causal effect: outcome model
and weighting

E[Yi(1) - Yi(0)]

E[E[Y; | T: =1, X;] — E[Y; | T: = 0, Xj]] (Outcome)
E| 1Y 1-=TH)Y;

w(Xi) 1—7(X;)

(weighting)

e Doubly Robust Estimator / Augmented IPW (AIPW):
Combine weighting (IPW) with outcome model so that if either

works, we can estimate causal effect
n

Farpw = iZ(ﬂl(Xi) - ﬂO(Xi)>

i=1
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n = 7(Xi) 1—#(X)

e It turns out that AIPW can be used for machine learning
e Try Problem Set 8 Question 2 for Stat286 before taking final



Proof of Double Robustness
e We only prove that the AIPW of E[Y;(1)] part is unbiased if either
propensity score model or outcome model is correctly specified.
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Machine Learning: Quick Overview (1)

e Linear regression has many problems
e Restrictive parametric assumptions
e Often does not work in the case of high-dimensional covariates
e To obtain = (X' X) X" Y, we need to obtain the inverse of
XTX.
e It is not possible under perfect collinenarity

e We want to use machine learning to flexible model the
high-dimensional confounding variables

e Why Machine Learning?
e Flexible (little parametric assumptions)
e Handle many confounding variables effectively



Machine Learning: Quick Overview (2)

e In many cases, the algorithm is designed to better predict the new
points
e |t is not designed for statistical inference of the parameter

e Rather than bias, we often care about MSE (mean squared error)
e Bias-Variance Trade-off

E|(y — PP = (BIFGI) - £6) + V[P + VI

Irreducible noise

MSE Bias? Variance

e Intiutively, bias refers to underfitting whereas variance refers to
overfitting

e We want to use regularization to achieve this to some extent
e Regularization: introduce bias but minimize variance
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Example: Ridge Regression
e The optimization problem is written as

Bridge = arg mﬁ!n{H Yl - XBH% + AHﬂH%}

e The closed form solution is given by
Bridge = (XTX + M) IXTY
e This makes (XX + Al,)~! always invertible
e Ridge regression is biased unless A = 0 since
ElBridge | X] = (XTX + M) 2XTE[Y | X]

={(X"X+ X, XX}
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Causal Machine Learning

But these MLs are designed to predict the outcome well, rather
than estimating the parameter

Thus, we might want to regard each ML model ¥ = #(X), and
using these ML model as a nuisance parameter (i.e., we do not
interpret), we want to estimate low-dimensional interpretable
parameter (e.g., ATE, ATT)

Challenge of using ML for Causal Inference
1. Regularization Bias: ML model is biased
2. Overfitting: Too flexible

Goal: You want the way to overcome these two challenges and get

confidence interval under the realistic condition
e We aim to derive asymptotic variance
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Recap: Tools for Asymptotic Variance

e Law of Large Numbers (LLN): If X;,---, X, are i.i.d.,

- 12
X ==X & E[X]
n
i=1

e Central Limit Theorem (CLT): If Xi,---, X, are i.i.d.,
V(X — E[Xi]) % (0, V[Xi])

e Slutsky’s Lemma: If X, 9, X for some random variable X and
Y, 2 ¢ for some constant c,

X, Y, & ex
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Taylor Expansion Viewpoint
e Think about the moment-based estimator that depends on both
parameter of interest 5 and nuisance function 7, denoted as
m(83,n)
e For regression: m(B) = E[X;(Y; — XB)] =0
e You obtain the estimator 3, as a solution of sample moment
mn(ﬁn) - %Z, Xl(% - Xﬁn) =0

e Recall that Taylor expansion gives you

Fx+ ) = Fx) + VFG)Th+ o hTHGR 4+

With the (functional version of) Taylor expansion of sample
moment mu(X;; Bn, ) around true parameter (5o, 7o),

A Gm,, X,'; 9 A
i Bnin) = a6 o) + ZZHE RN (5 g
B=Po
+ am,,(;(;?ﬁ,n) (in — 1mo) + Reminder Term

="0
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Neyman Orthogonality

e Thus, if we can ignore the reminder term, as mn(ﬁAn,ﬁn) =0,

VlBn = o) = v/a| 20D

+\f{amn(ﬂ, )’ }1 dmn(B,1m)
B=po

-1
} mu(Bo,M0)
B=Po

(ﬁn - 770)

=70

ap on

Estimation Error of Nuisance Functions

e From the case of ridge regression, we learn that 7}, — 19 # 0 in the
case of machine learning due to regularization

o If %j’”) = 0, then the second term in the above equation

="0

becomes 0
e In other words, our estimator Bn becomes not sensitive to the
estimation error from nuisance functions 7}, — 7o
e This is called Neyman Orthogonality
e We thus need to use m,(X;; 8o, 70) that satisfies Neyman
orthogonality
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Asymptotic Normality (1)

Motivation: We want to obtain the asymptotic normality
e To derive asymptotic normality, we want to use CLT
e To use central limit theorem, we need the average

Suppose that m,(50,70) = £ 37— ¥(Xi, Bo. mo)
e In the case of OLS, %(X;, Bo) = Xi(Yi — X5o)
e Notice that E[¢(X;, Bo,1m0)] =0

If our mp(Bo,mo) satisfies Neyman orthogonality, then

amn(ﬁv 77)

ﬁ(én—ﬁ(ﬂ:{ B ’B=Bo

-1 n
1
} ﬁ(n Z%(Xwﬁo;ﬁo))
i=1
By central limit theorem, we can obtain

ﬁ(i i@g}(){,’ Bo, 770)) < N0, E[w(X;, Bo, m0)?])
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Asymptotic Normality (2)

e Thus, as m,(Bo,m0) 2 m(Bo,m0) (by LLN), we have

=4 |

2y 05E[m(Bo,m0)]

e Therefore, by Slutsky's lemma, we finally obtain

-1

N

Vn(Bn — Bo) = {8mna(§,n) ’5:30} ﬁ(i ’Zn:li/}(xi,ﬂo, 770)>

d E[¢(X;, Bo. m0)?]
4N (o 95E[m(Bo, 10)] )

which corresponds to the lecture slide p.6
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Influence Function

The previous page derivation gives you the motivation of influence
function

In order to obtain the asymptotic distribution of 5’ we want some
function ¥ s.t.

A 1 Z
V(6 - B) = 7 i;%l)(xf), E[(X)] =0
If we obtain such ¢ (X;), then we can apply CLT and obtain

V(B — B) % N(0,E[v(X:)?])

Such ¥(X;) is called Influence function
e There are many influence function
e The one that attains the minimum is called efficient influence
function

Takeaway: Influence function is a nice object for us to derive
asymptotic normality
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Causal Mediation Analysis: Overview
e Estimand
Controlled Direct Effect : £(m) = E[Y;(1, m) — Y;(0, m)]
Natural Indirect Effect : &(m) = E[Y;(t, M;(1)) — Yi(t, M;(0))]
Natural Direct Effect : {(m) = E[Y;(1, M;(t)) — Yi(0, M;(t))]

e NIE / NDE has effect decomposition
Average Treatment Effect
E[Yi(1, Mi(1)) = Yi(0, M;(0))]

E[Yi(1, Mi(1)) — Yi(1, Mi(0))] + E[Yi(L, M;(0)) — Yi(0, Mi(0))]

_ Natural Indirect Effect

Natural Direct Effect
E[Yi(1, Mi(1)) — Yi(0, Mi(1))] + E[Y;(0, Mi(1)) — Yi(0, M;(0))]

Natural Direct Effect

Natural Indirect Effect
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Controlled Direct Effect: Assumptions

@\

O]

e |dentification Assumption: Sequential Ignorability

{Yi(t,m), M;(£')} 1L T;|X; (Treatment Uncounfoundedness)
Yi(t,m) 1L M; | Xi = x, T;, Z; (Mediator Uncounfoundedness)

e Even under experiment, mediator unconfoundedness is difficult
e As a result, people use them with sensitivity analysis

e However, if we simply run regression controlling M; and Z;, we
suffer from post-treatment bias
e Thus, under this assumption, new strategies are needed

e They are called Structural Nested Mean Model / Marginal
Structural Model

e Note that they are also used for time-varying treatment /
longitudinal studies (where you think Yi:(T1, To, T3, ))



Structural Nested Mean Model (SNMM) (1)

e For simplicity, let's assume no intermediate interaction
E[Yi(t,m) = Yi(t,m) | X;, Ti, Zi]
= IE[)/l(tv m) - \/i(ta m/) | Xi7 Tl]

e Structural nested mean model assumes that the conditional
expectation of potential outcome is written as

E[Yi(t, m) | Xi] = E[Yi(¢,0) | Xi] +~(t, m, X;)
where v is called blip function
~v(t, m,x) = E[Yi(t,m) — Yi(t,0) | Xi = x]
e With sequential ignorability and no intermediate interaction,
E[Y; — v(t, M;,x) | T; = t, X; = x] = E[Yi(¢t,0) | X; = x]
e Therefore,
E[Yi(t,0) — Yi(0,0) | X; = x] = E[Y; — (¢, Mi, x) | T; = t, X; = x]
—E[Y; —~(0, M, x) | T; =0, X; = x]
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Structural Nested Mean Model (SNMM) (2)
e Then, blip function is identified under sequential ignorability as
Y(t,mx)=E[Y; | T =t,Mi=m,X; = x,Z; = 2]
—E[Y;| Ti=t,M;=0,X; = x,Z; = Z]
e Estimation Procedure (Sequential G-Estimation):
e STEPIL: Run first stage regression
E[Y;| Ti, M;, Xi, Zi] = ag + a1 Ty + coMj + a3 Xi + au Z;

and obtain blip function as v(t, m, x) = aom
e Note that you can make blip function more complex (e.g., w/
interaction)
e STEP2: Using the blip function, estimate

E[Y; —y(t, Mi,x) | Ti; Xil = Bo + 1 Ti + 52X
and interpret 3; as CDE.

e Intuition: SNMM avoids collider-bias by not conditioning on M;

and Z; directly
e Blip function models the effect of switching mediator values



Marginal Structural Model (MSM)

e Problem of SNMM: need to correctly specify the blip function
e Misspecification of blip function can lead to bias

e Marginal Structural Model': Assume that the marginal mean of
potential outcome is written as

E[Yi(t, m)] = g(t, m; 5)

e Importantly, it is marginal, meaning that we do not condition on M;
and Z; — no collider bias

e We use weighting to estimate marginal structural model
e Intuitively, at each point (T; and M; separately), we use weight so
that we can recover potential outcome without directly conditioning
on post-treatment at each time point

'For both MSM and SNMM, "Structural" means modeling the relationship
between potential outcome and treatment directly. As a result, the parameter of
structural model is not a nuisance parameter.
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Natural Direct Effect: Assumptions

e |dentification Assumption

{Yi(t,m), Mi(t')} 1L Ti| X
Yi(t',m) 1L M;(t) | X; = x, T; (Cross-world Counterfactual)

e Note that this is stronger than CDE

e Assume no intermediate variable Z;
e Cross-world Counterfactual

e Look at Question 2 of Review Question for module 9
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Natural Direct Effect: ldentification

E[Y (t, M(t"))|X]
=Y E[Y(t,m) | X,M(t) = m[P(M(t') =m | X) (.LILE)

=Y "E[Y(t,m) | X,M(t) =m, T = t]P(M(t') = m | X)
=Y E[Y(t,m) | X, T =t|P(M(t) =m| X, T =t)
=Y E[Y(t,m) | X, T =t,M(t) = m[P(M(t') =m | X, T =)

=Y E[Y | X, T=t,M=mP(M=m|X, T =t)
m
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