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Logistics

e Problem Set 8 is due on Next Wednesday
e We decided to make it due on Wednesday
e Check Google Calendar about the schedule

e Today's agenda
e Matching
o Weighting



Overview: Nonparametric ldentification
This week is about the different estimation strategy.

We assume the conditional ignorability given confounder X;:
Y. Y(0)) L T X

e We also need positivity: 0 <P(T; =1 | X; = x) <1 for any X; = x
We can identify average treatment effect nonparametrically:
Tate = E[Yj(1) — Y;(0)]
= E[Yi(1)] — E[Yi(0)]
= E[E[Y;(1) | Xi]] - E[E[Y;(0) | Xi]] (. L.L.E)
— B[E[Y/(1) | T; = 1, X]] — E[E[Y)(0) | T; = 0, X]] (- Ignorability)
=E[E[Y; | T; = 1, X;]] — E[E[Y; | T; =0, X;]] (. Consistency)

Equivalently,

S —— /{E[Y,- | Ti=1,% = x] —E[Y; | T = 0, X = x]}dF(x)



Overview: Nonparametric ldentification

e When estimand is ATT,

Tart = E[Yi(1) = Yi(0) | T; = 1]

=E[Yi(1) | Ti = 1] - E[Yi(0) | T; = 1]

=E[Y;| Ti =1 —E[Yi(0) | T; =1] (. consistency)

=E[Y;| T; = 1] — E[E[Y;(0) | X, T;=1] | T;=1] (.- L.LE)
—E[Y; | T; = 1] — E[E[Y;(0) | X;, T; = 0] | T; = 1] (-.- Ignorability)
=E[Y;| T; =1 -E[E[Y;| Ti=0,Xj] | Ti=1] (. Consistency)

e NOTE: These identifications are nonparametric

e We do not assume the model assumption like linear models
e The question is how to estimate the target parameter and what
assumption we will make



Overview: Different Adjustment Strategies

There are many methods to control confounder

Outcome model
Matching
e Propensity Score Matching
e Coarsened Exact Matching (CEM)
e Cardinality Matching
Weighting
e Inverse Probability Weighting (IPW)
e Covariate Balancing Propensity Score
e Entropy Balancing / Stable Weights
Doubly Robust Estimation (next week)

e Augmented IPW
e Double Machine Learning / Semiparametric Estimation



Outcome model / Regression Adjustment
Let's start with outcome model. Recall that

ElY; | T, Xi] = a+ BT+ 9" X;
Recall that the identification formula of ATE is given by

S /{E[Y,- | Ti=1,% =x] —E[Y; | T; = 0,X; = x]}dF(x)

e If we assume model is correct, then ToTg = 8

If your estimand is ATT,
tarr =E[Y,| T = 1] —E[E[Y; | T, = 0,X] | T; = 1]

n

1 N
=Y TYi—{a+37X))
n ) ——————

E[Yi[Ti=0,X]
which is imputing the outcome under control.

Note that outcome model can be model-dependent



Matching: Overview

e For any outcome regression model E[Y; | T; = 0, Xi] = fio(X;), the
regression-based estimator for ATT is written as

. 1< .
Tarr = - > Ti(Yi — fo(Xi)

e Matching is the way to find the observation under control which is
closer to treated observation; formally,

. 1<
TMatching:anTi< i ’M‘ Z Y)
i=1

i'eM;

e Notice that in the case of exact matching, M; is the set of
observations with Xy = Xj for all i’ € M; and T;; =0

e This is why matching is the nonparametric imputation (i.e.,
reducing model dependence)



Matching: Overview

e Matching: Impute missing potential outcomes using the observed
outcomes of “closest” units
e Goal of Matching: Remove all imbalances in observed covariates
e While there are many matching methods, you should choose the one
that gives you the best covariate balances!
e When the number of covariates is small and all are discrete, we can
do exact matching
e However, often the exact matching is not feasible
e How should we do when we have continuous variables / many
controls?
e Option 1: Matching based on Distance Measures
e Measure the distance and pick up the nearest neighbor
e Option 2: Coarsened Exact Matching
e Coarsening the variable into discrete variables / bins
e Option 3: Propensity Score Matching
e Create one dimensional summary of covariates (propensity score)
e However, non-exact matching allows covariate imbalances, which

leads to the bias.



Bias Decomposition (Heckman et al. 1998)

e Matching can deal with
e Bias due to lack of common support
e Bias due to imbalances in covariates within their common supports

e Matching cannot deal with bias due to unobserved confounder.

E[Y;(0) | T; = 1] —E[Y; | T; =1]

= / E[Yi(0) | Ti = 1, Xi]dFx; 1,=1(Xi) —/ E[Yi(0) | Ti = 0, Xi]dFx; 7,=0(Xi)
S1\S So\S

Bias due to lack of common support

+ /IE[Y,-(O) | Ti = 0, Xi]{dFx, 7,=1(Xi) — dFx;|7,=0(Xi)}
s

Bias due to imbalances in covariates within their common support

| / (E1¥i0) | T3 =1, X1~ ELYi(0) | T3 = 0,X1 ) dF 7.1 (X)
S

Bias due to unobservable variables within their common support



Extra: Why matching works
e M; is generated given {T;, X;}"_; w/o looking outcome so that

{Yitiza 1L M [ {Ti, Xitisa

Then, with this and i.i.d. sampling (both used in third equality),
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Bias Correction (Abadie and Imbens 2011)

e Let's first derive the bias of matching estimator. Now, recall that

> )

10
Matching n ;:1 I< i ’M/’ S

Then, for treated observation (i.e., T; = 1),

-1

=E[Y;| Ti=1,X] -

> Vo AT X M

i’eM;

> E[Yy | Ty =0,X]
i"eM;

=E[Y;| T; =1,X] > mo(Xi
’M’/»EM

IMI

However, because of non-exact matching, X; # X for i’ € M, (notice
the difference from the slide “Why Matching works").
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Bias Correction (Abadie and Imbens 2011)

e Hence, the bias is given by
IE[Tmatch - T]

ZE[E[YI'!TI'Z Xi po(X
P

CE[Y, | Ti=1,X] +E[Y,| T; = o,x,-]}

=E [ 2 (1000~ o)

i'eM;

e Idea of Bias Correction: Model bias with regression

po(X;) = BT X;
e Then, the bias term is 3T (X; — Xj/)
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Propsneity Score (1)

Propensity Score: 7(X;) =P(T; =1 Xj)
e In both matching / weighting, propensity score is used
Propensity score has the balancing properties:

T,' A X,' | 7T(X,')

Under ignorability {Yi(1), Y;(0)} L T; | X;, balancing property
implies ignorability given propensity score:

{Yi(1), Yi(0)} LL T; [ m(X)
Takeaway: Instead of conditioning on X;, we only need to control

m(X)

e Since m(X;) is one-dimensional, it can be used for matching easily
e But we need to estimate propensity score
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Propsneity Score (2): Proof of Balancing Property
e To prove the independence between two random variables A and B,
all you need is to show that P(A | B) = P(A).

P(T, =1 ‘ W(X;),Xi) :P(T, =1 ‘ X,) :7T(X,')

e Also, we can also show that

P(T; =1|n(X;)) =E[T; | 7(X;)] (." T is binary)
= E[E[T; | Xi, m(Xi)] | #(Xi)] (. L.I.LE)
=E[E[T; | Xi] | =(Xi)]
= E[r(X;) | 7(Xi)] = =(X;)

e Therefore,
]P)(T, = 1 | 7I'(X,'),X,‘) = P(T, = 1 | 7T(X,))

which implies T; 1L X; | w(X;).
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Propsneity Score (3): Proof of Ignorability

P(T; =11 Yi(1), Yi(0), 7(X;))

=E[T; | Yi(1), Yi(0), 7(X;)]

=E[E[T; | Yi(1), Yi(0), Xi] | Yi(1), Yi(0), (Xi)]
=E[E[T; | Xi] | Yi(1), Yi(0), 7(X;)]

= E[n(X;) | Yi(1), Yi(0), m(Xi)]

= 7(X;)

e Notice that we already proved P(T; = 1 | n(X;)) = m(X;), which
means

P(Ti = 1] Yi(1), Yi(0), w(Xi)) = P(T; = 1| =(Xi))

which means
Ti 1L {Yi(1), Yi(0)} [ m(X;)
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Extra: Balancing Score and Ignorability

e B(Xj) is a balancing score (i.e., Xj I T; | B(X;)) if and only if
there exists a function f such that «(X;) = f(B(X;)).
e Propensity score is a coarsest balancing score.
e For proof, see Theorem 2 of Rosenbaum and Rubin (1983)

e Implication: Under strong ignorability, any balancing score leads
to ignorability given balancing score

e Proof: Similar to the proof in the previous page,

P(T; =1 B(X;)) =E[T; | B(X;)] (. T is binary)
= E[E[T; | X;, B(Xi)] | B(Xi)] (. L.LE)
= E[E[T; | Xi] | B(Xi)]
= E[r(Xi) | B(X))]
= E[r(Xi) | f(w(Xi))] = (Xi)
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Extra: Balancing Score and Ignorability: Cont.

e Proof (cont.): Also,
P(Ti = 11 Yi(1), Yi(0), B(X7))
= E[T; | Yi(1), Yi(0), B(X)]
= E[E[T; | Yi(1), Yi(0), Xi] | Yi(1), Yi(0), B(Xi)]
= E[E[T; [ Xi] | Yi(1), Yi(0), B(X))]
= E[x(X;) | Yi(1), Yi(0), B(X))]
= E[x(Xi) | Yi(1), Yi(0), f(x(X)))]
= 7(X;)
e Therefore,
P(T; =11 Yi(1), Yi(0),B(Xi)) =P(T; = 1| B(X))
which implies {Y;(1), Y;(0)} AL T; | B(X;).

e This explains why achieving balance is important
e We only need to balance the observed covariates
e The problem is how to achieve the best balance
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Cardinality Matching

e ldea: Match pairs so that we can have minimal imbalances
mx Y Y M
i:Ti=1j:T;=0

s.t. Z Mj; <1 for each i with T; =1
J:T;=0

For treatment i, at most one match from control

Z Mj; <1 for each j with T; =0
iZT,':].

For control j, at most one match from treatment
| 225 m=1 210 Mi{fi(Xi) — fi(Xi)

< ¢, for each k
Xim=1 2 m=a Mi

Acceptable imbalances between matched pair
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Balance Test / Equivalence Test

e As balance of covariate is important, we often want the
low-dimensional summary on it
e Balance Test: measure the standardized difference in covariates and
report if we reject the null

e Problem: Failure to reject the null # Acceptance of null hypothesis
e Null hypothesis: Covariates are balanced

e Equivalence Test: Null hypothesis is “covariates are not
balanced”

e By rejecting the null, we can statistically say that covariates are
balanced.

e Formally, with pre-specified equivalence margin A > 0,

Ho : |7| > A (Difference is too large)
Hy :|7] < A (Difference is small enough)

19



Two One-Sided Tests (TOST)

e Two One-Sided Tests: Most classical procedure for equivalence
test

e Specifically, test two times:
LHY 7 <-A vs. HY:7>-A
2HP v >+ vs. HY 1< 4

Difference in Means Test Equivalence Test

ot 1 Failto. _— Failto Refet " Fail to
ot o e o :Ii:llr:r;snns ot e ol s imenca :'"'E::"w nfr:];:é:ms
A A/
\ f \ /
\ P
[\ P
{ \ |
a2 L a2 'y
‘l/ ‘\ j X
diff diff

Note: The left panel depicts the logic of tests of difference under the null hypothesis of
no difference. The right panel depicts the logic of one type of equivalence test—the two
one-sided t-test (TOST)—under the null hypothesis of difference.



Weighting: Overview
e Limitation of Matching

e |t can throw away many observations
e It may not be able to balance covariates

e ldea: Weight each observation so that the covariate is balanced

e Horvitz-Thompson estimator (a.k.a inverse probability
weighting)

25 00 )

ATT = 13-y, - 2O v
{

-(1- Ti)Yi}
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Unbiasedness of HT-estimator (ATE)

S S L RS

=1 i=1

- n;E{E[ Yi(,;) — (11__?(225 ) yx]} (- L.LE)

1BV X] Bl T)Y(0)] X]
_”;E- (X)) 1 —7(Xi) ]
=m(X) =1-7(X;)
B PUESL OIE MR AR LIES)
st m(Xi) 1—m(X;)
=15 w[Ervi) | X1 - B%(0) | X1
i-1 L

— E[v,(1) - Yi(0)]
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Hajek estimator / Stabilized weights

e Problem: Weights can be extreme
e Thus, we need to stabilize the weights

o —

e Hajek Estimator: Use the normalized weights; i.e., for E[Y;(1)],

use

8 T/ (Xi) < 1K T >
Y =~ Vi |« HTis — ~ Y;
D ST "2 (X
weight of Hajek HT Weight

e Hajek estimator is asymptotically consistent (close to truth for
large )
e The denominator is %E[Zjnzl ol = HU I 1]E[ y X =1
e The numerator is same as HT estlmator which is in expectatlon
equal to E[Y;(1)]
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Toward Better Estimation of Propensity Score

e Both HT and Hajek estimators require estimation of propensity

score
e i.e., if propensity score is misspecified, we have the bias

e Three different approaches (next week)
1. Covariate Balancing Propensity Score (CBPS)
e Estimate propensity score s.t. we achieve balance
e But still assume parametric assumption on propensity score function
2. Calibration: Entropy Balancing / Stable Weights
e Estimate weight so that we achieve balance
e We no longer estimate propensity score
3. Causal Machine Learning / Semiparametric Estimation
e Flexibly estimate propensity score / outcome models
e Relax parametric assumption as much as possible
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