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Logistics

• Problem Set 8 is due on Next Wednesday
• We decided to make it due on Wednesday
• Check Google Calendar about the schedule

• Today’s agenda
• Matching
• Weighting
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Overview: Nonparametric Identification
• This week is about the different estimation strategy.
• We assume the conditional ignorability given confounder Xi :

{Yi(1), Yi(0)} ⊥⊥ Ti | Xi

• We also need positivity: 0 < P(Ti = 1 | Xi = x) < 1 for any Xi = x

• We can identify average treatment effect nonparametrically:
τATE = E[Yi(1) − Yi(0)]
= E[Yi(1)] − E[Yi(0)]
= E[E[Yi(1) | Xi ]] − E[E[Yi(0) | Xi ]] (∵ L.I.E)
= E[E[Yi(1) | Ti = 1, Xi ]] − E[E[Yi(0) | Ti = 0, Xi ]] (∵ Ignorability)
= E[E[Yi | Ti = 1, Xi ]] − E[E[Yi | Ti = 0, Xi ]] (∵ Consistency)

• Equivalently,

τATE =
∫

{E[Yi | Ti = 1, Xi = x ] − E[Yi | Ti = 0, Xi = x ]}dF (x)
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Overview: Nonparametric Identification

• When estimand is ATT,

τATT = E[Yi(1) − Yi(0) | Ti = 1]
= E[Yi(1) | Ti = 1] − E[Yi(0) | Ti = 1]
= E[Yi | Ti = 1] − E[Yi(0) | Ti = 1] (∵ consistency)
= E[Yi | Ti = 1] − E[E[Yi(0) | Xi , Ti = 1] | Ti = 1] (∵ L.I.E)
= E[Yi | Ti = 1] − E[E[Yi(0) | Xi , Ti = 0] | Ti = 1] (∵ Ignorability)
= E[Yi | Ti = 1] − E[E[Yi | Ti = 0, Xi ] | Ti = 1] (∵ Consistency)

• NOTE: These identifications are nonparametric
• We do not assume the model assumption like linear models
• The question is how to estimate the target parameter and what

assumption we will make
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Overview: Different Adjustment Strategies

• There are many methods to control confounder
• Outcome model
• Matching

• Propensity Score Matching
• Coarsened Exact Matching (CEM)
• Cardinality Matching

• Weighting
• Inverse Probability Weighting (IPW)
• Covariate Balancing Propensity Score
• Entropy Balancing / Stable Weights

• Doubly Robust Estimation (next week)
• Augmented IPW
• Double Machine Learning / Semiparametric Estimation
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Outcome model / Regression Adjustment
• Let’s start with outcome model. Recall that

E[Yi | Ti , Xi ] = α + βTi + γ⊤Xi

• Recall that the identification formula of ATE is given by

τATE =
∫

{E[Yi | Ti = 1, Xi = x ] − E[Yi | Ti = 0, Xi = x ]}dF (x)

• If we assume model is correct, then τATE = β

• If your estimand is ATT,

τ̂ATT = ̂E[Yi | Ti = 1] − ̂E[E[Yi | Ti = 0, Xi ] | Ti = 1]

= 1
n1

n∑
i=1

Ti(Yi − {α̂ + γ̂⊤Xi}︸ ︷︷ ︸
̂E[Yi |Ti =0,Xi ]

)

which is imputing the outcome under control.
• Note that outcome model can be model-dependent
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Matching: Overview
• For any outcome regression model E[Yi | Ti = 0, Xi ] = µ̂0(Xi), the

regression-based estimator for ATT is written as

τ̂ATT = 1
n1

n∑
i=1

Ti(Yi − µ̂0(Xi))

• Matching is the way to find the observation under control which is
closer to treated observation; formally,

τ̂Matching = 1
n1

n∑
i=1

Ti

(
Yi − 1

|Mi |
∑

i ′∈Mi

Yi ′

)

• Notice that in the case of exact matching, Mi is the set of
observations with Xi′ = Xi for all i ′ ∈ Mi and Ti′ = 0

• This is why matching is the nonparametric imputation (i.e.,
reducing model dependence)
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Matching: Overview
• Matching: Impute missing potential outcomes using the observed

outcomes of “closest” units
• Goal of Matching: Remove all imbalances in observed covariates
• While there are many matching methods, you should choose the one

that gives you the best covariate balances!
• When the number of covariates is small and all are discrete, we can

do exact matching
• However, often the exact matching is not feasible

• How should we do when we have continuous variables / many
controls?

• Option 1: Matching based on Distance Measures
• Measure the distance and pick up the nearest neighbor

• Option 2: Coarsened Exact Matching
• Coarsening the variable into discrete variables / bins

• Option 3: Propensity Score Matching
• Create one dimensional summary of covariates (propensity score)

• However, non-exact matching allows covariate imbalances, which
leads to the bias.
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Bias Decomposition (Heckman et al. 1998)
• Matching can deal with

• Bias due to lack of common support
• Bias due to imbalances in covariates within their common supports

• Matching cannot deal with bias due to unobserved confounder.

E[Yi (0) | Ti = 1] − E[Yi | Ti = 1]

=
∫

S1\S
E[Yi (0) | Ti = 1, Xi ]dFXi |Ti =1(Xi ) −

∫
S0\S

E[Yi (0) | Ti = 0, Xi ]dFXi |Ti =0(Xi )︸ ︷︷ ︸
Bias due to lack of common support

+
∫

S
E[Yi (0) | Ti = 0, Xi ]{dFXi |Ti =1(Xi ) − dFXi |Ti =0(Xi )}︸ ︷︷ ︸
Bias due to imbalances in covariates within their common support

+
∫

S

(
E[Yi (0) | Ti = 1, Xi ] − E[Yi (0) | Ti = 0, Xi ]

)
dFXi |Ti =1(Xi )︸ ︷︷ ︸

Bias due to unobservable variables within their common support
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Extra: Why matching works
• Mi is generated given {Ti , Xi}n

i=1 w/o looking outcome so that
{Yi}n

i=1 ⊥⊥ Mi | {Ti , Xi}n
i=1

Then, with this and i.i.d. sampling (both used in third equality),

E
[

1
|Mi |

∑
i′∈Mi

Yi′

]
= E

[
E

[
1

|Mi |
∑

i′∈Mi

Yi′ | X1, . . . , Xn, T1, . . . , Tn, Mi

]]
= E

[
1

|Mi |
∑

i′∈Mi

E
[
Yi′

∣∣∣ X1, . . . , Xn, T1, . . . , Tn, Mi

]]
= E

[
1

|Mi |
∑

i′∈Mi

E[Yi′ | Xi′ , Ti′ = 0]
]

= E
[

1
|Mi |

∑
i′∈Mi

µ0(Xi′)
]

= E
[

1
|Mi |

∑
i′∈Mi

µ0(Xi)
]

(∵ Xi′ = Xi for all i ′)

= E[µ0(Xi)]
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Bias Correction (Abadie and Imbens 2011)
• Let’s first derive the bias of matching estimator. Now, recall that

τ̂Matching = 1
n1

n∑
i=1

Ti

(
Yi − 1

|Mi |
∑

i ′∈Mi

Yi ′

)

Then, for treated observation (i.e., Ti = 1),

E
[
Yi − 1

|Mi |
∑

i ′∈Mi

Yi ′ | {Tj , Xj}N
j=1, Mi

]

= E[Yi | Ti = 1, Xi ] − 1
|Mi |

∑
i ′∈Mi

E[Yi ′ | Ti ′ = 0, Xi ′ ]

= E[Yi | Ti = 1, Xi ] − 1
|Mi |

∑
i ′∈Mi

µ0(Xi ′)

However, because of non-exact matching, Xi ̸= Xi ′ for i ′ ∈ Mi (notice
the difference from the slide “Why Matching works”).
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Bias Correction (Abadie and Imbens 2011)

• Hence, the bias is given by

E[τmatch − τ ]

= E
[
E[Yi | Ti = 1, Xi ] − 1

|Mi |
∑

i ′∈Mi

µ0(Xi ′)

− E[Yi | Ti = 1, Xi ] + E[Yi | Ti = 0, Xi ]
]

= E
[ 1

|Mi |
∑

i ′∈Mi

(
µ0(Xi) − µ0(Xi ′)

)]

• Idea of Bias Correction: Model bias with regression
µ0(Xi) = β⊤Xi

• Then, the bias term is β⊤(Xi − Xi′)
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Propsneity Score (1)
• Propensity Score: π(Xi) = P(Ti = 1 | Xi)

• In both matching / weighting, propensity score is used
• Propensity score has the balancing properties:

Ti ⊥⊥ Xi | π(Xi)

• Under ignorability {Yi(1), Yi(0)} ⊥⊥ Ti | Xi , balancing property
implies ignorability given propensity score:

{Yi(1), Yi(0)} ⊥⊥ Ti | π(Xi)

• Takeaway: Instead of conditioning on Xi , we only need to control
π(Xi)

• Since π(Xi) is one-dimensional, it can be used for matching easily
• But we need to estimate propensity score
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Propsneity Score (2): Proof of Balancing Property
• To prove the independence between two random variables A and B,

all you need is to show that P(A | B) = P(A).

P(Ti = 1 | π(Xi), Xi) = P(Ti = 1 | Xi) = π(Xi)

• Also, we can also show that

P(Ti = 1 | π(Xi)) = E[Ti | π(Xi)] (∵ T is binary)
= E[E[Ti | Xi , π(Xi)] | π(Xi)] (∵ L.I.E)
= E[E[Ti | Xi ] | π(Xi)]
= E[π(Xi) | π(Xi)] = π(Xi)

• Therefore,

P(Ti = 1 | π(Xi), Xi) = P(Ti = 1 | π(Xi))

which implies Ti ⊥⊥ Xi | π(Xi).
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Propsneity Score (3): Proof of Ignorability

P(Ti = 1 | Yi(1), Yi(0), π(Xi))
= E[Ti | Yi(1), Yi(0), π(Xi)]
= E[E[Ti | Yi(1), Yi(0), Xi ] | Yi(1), Yi(0), π(Xi)]
= E[E[Ti | Xi ] | Yi(1), Yi(0), π(Xi)]
= E[π(Xi) | Yi(1), Yi(0), π(Xi)]
= π(Xi)

• Notice that we already proved P(Ti = 1 | π(Xi)) = π(Xi), which
means

P(Ti = 1 | Yi(1), Yi(0), π(Xi)) = P(Ti = 1 | π(Xi))

which means
Ti ⊥⊥ {Yi(1), Yi(0)} | π(Xi)
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Extra: Balancing Score and Ignorability
• B(Xi) is a balancing score (i.e., Xi ⊥⊥ Ti | B(Xi)) if and only if

there exists a function f such that π(Xi) = f (B(Xi)).
• Propensity score is a coarsest balancing score.
• For proof, see Theorem 2 of Rosenbaum and Rubin (1983)

• Implication: Under strong ignorability, any balancing score leads
to ignorability given balancing score

• Proof: Similar to the proof in the previous page,

P(Ti = 1 | B(Xi)) = E[Ti | B(Xi)] (∵ T is binary)
= E[E[Ti | Xi , B(Xi)] | B(Xi)] (∵ L.I.E)
= E[E[Ti | Xi ] | B(Xi)]
= E[π(Xi) | B(Xi)]
= E[π(Xi) | f (π(Xi))] = π(Xi)
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Extra: Balancing Score and Ignorability: Cont.
• Proof (cont.): Also,

P(Ti = 1 | Yi(1), Yi(0), B(Xi))
= E[Ti | Yi(1), Yi(0), B(Xi)]
= E[E[Ti | Yi(1), Yi(0), Xi ] | Yi(1), Yi(0), B(Xi)]
= E[E[Ti | Xi ] | Yi(1), Yi(0), B(Xi)]
= E[π(Xi) | Yi(1), Yi(0), B(Xi)]
= E[π(Xi) | Yi(1), Yi(0), f (π(Xi))]
= π(Xi)

• Therefore,
P(Ti = 1 | Yi(1), Yi(0), B(Xi)) = P(Ti = 1 | B(Xi))

which implies {Yi(1), Yi(0)} ⊥⊥ Ti | B(Xi).

• This explains why achieving balance is important
• We only need to balance the observed covariates
• The problem is how to achieve the best balance
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Cardinality Matching

• Idea: Match pairs so that we can have minimal imbalances

max
∑

i :Ti =1

∑
j:Tj =0

Mij

s.t.
∑

j:Tj =0
Mij ≤ 1 for each i with Ti = 1

︸ ︷︷ ︸
For treatment i , at most one match from control∑
i :Ti =1

Mij ≤ 1 for each j with Tj = 0
︸ ︷︷ ︸

For control j, at most one match from treatment

|
∑

i :Ti =1
∑

j:Tj =0 Mij{fk(Xik) − fk(Xjk)}|∑
i :Ti =1

∑
j:Tj =0 Mij

≤ ϵk , for each k︸ ︷︷ ︸
Acceptable imbalances between matched pair
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Balance Test / Equivalence Test

• As balance of covariate is important, we often want the
low-dimensional summary on it

• Balance Test: measure the standardized difference in covariates and
report if we reject the null

• Problem: Failure to reject the null ̸= Acceptance of null hypothesis
• Null hypothesis: Covariates are balanced

• Equivalence Test: Null hypothesis is “covariates are not
balanced”

• By rejecting the null, we can statistically say that covariates are
balanced.

• Formally, with pre-specified equivalence margin ∆ > 0,

H0 : |τ | ≥ ∆ (Difference is too large)
H1 : |τ | ≤ ∆ (Difference is small enough)
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Two One-Sided Tests (TOST)
• Two One-Sided Tests: Most classical procedure for equivalence

test
• Specifically, test two times:

1.H(1)
0 : τ ≤ −∆ v.s. H(1)

1 : τ > −∆

2.H(2)
0 : τ ≥ +∆ v.s. H(1)

1 : τ < +∆
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Weighting: Overview
• Limitation of Matching

• It can throw away many observations
• It may not be able to balance covariates

• Idea: Weight each observation so that the covariate is balanced
• Horvitz-Thompson estimator (a.k.a inverse probability

weighting)

ÂTE = 1
n

n∑
i=1

{ TiYi
π̂(Xi)

− (1 − Ti)Yi
1 − π̂(Xi)

}

ÂTT = 1
n1

n∑
i=1

{
TiYi − π̂(Xi)(1 − Ti)Yi

1 − π̂(Xi)

}

ÂTC = 1
n0

n∑
i=1

{(1 − π̂(Xi))TiYi
π̂(Xi)

− (1 − Ti)Yi

}
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Unbiasedness of HT-estimator (ATE)

1
n

n∑
i=1

E
[ TiYi

π(Xi)
− (1 − Ti)Yi

1 − π(Xi)

]
= 1

n

n∑
i=1

E
[TiYi(1)

π(Xi)
− (1 − Ti)Yi(0)

1 − π(Xi)

]

= 1
n

n∑
i=1

E
{
E

[TiYi(1)
π(Xi)

− (1 − Ti)Yi(0)
1 − π(Xi)

| Xi

]}
(∵ L.I.E)

= 1
n

n∑
i=1

E
[E[TiYi(1) | Xi ]

π(Xi)
− E[(1 − Ti)Yi(0) | Xi ]

1 − π(Xi)

]

= 1
n

n∑
i=1

E
[ =π(Xi )︷ ︸︸ ︷
E[Ti | Xi ]E[Yi(1) | Xi ]

π(Xi)
−

=1−π(Xi )︷ ︸︸ ︷
E[1 − Ti | Xi ]E[Yi(0) | Xi ]

1 − π(Xi)

]

= 1
n

n∑
i=1

E
[
E[Yi(1) | Xi ] − E[Yi(0) | Xi ]

]
= E[Yi(1) − Yi(0)]
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Hajek estimator / Stabilized weights
• Problem: Weights can be extreme

• Thus, we need to stabilize the weights

• Hajek Estimator: Use the normalized weights; i.e., for ̂E[Yi(1)],
use

1
n

n∑
i=1

Ti/π̂(Xi)∑n
j=1 Tj/π̂(Xj)︸ ︷︷ ︸

weight of Hajek

Yi

(
↔ HT is 1

n

n∑
i=1

Ti
π̂(Xi)︸ ︷︷ ︸

HT Weight

Yi

)

• Hajek estimator is asymptotically consistent (close to truth for
large N)

• The denominator is 1
nE[

∑n
j=1

Tj
π(Xj ) ] = 1

nE[
∑n

j=1 E[ Tj
π(Xj ) | Xj ]] = 1

• The numerator is same as HT estimator, which is in expectation
equal to E[Yi(1)]
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Toward Better Estimation of Propensity Score

• Both HT and Hajek estimators require estimation of propensity
score

• i.e., if propensity score is misspecified, we have the bias

• Three different approaches (next week)
1. Covariate Balancing Propensity Score (CBPS)
• Estimate propensity score s.t. we achieve balance
• But still assume parametric assumption on propensity score function
2. Calibration: Entropy Balancing / Stable Weights
• Estimate weight so that we achieve balance
• We no longer estimate propensity score
3. Causal Machine Learning / Semiparametric Estimation
• Flexibly estimate propensity score / outcome models
• Relax parametric assumption as much as possible
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