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Logistics

• Problem Set 7 is due on Next Monday
• From PS7, we release problem set every monday and due on next

monday
• You need to submit 3 out of 5 problem set
• If you submit revenge midterm, it is counted as 1 submission

• Today’s agenda
• Directed Acyclic Graph / Structural Causal Model
• Partial Identification (Problem Set 7)
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Directed Acyclic Graph
• DAG: Directed Acyclic Graph

• Tool to know which variable you need to condition on to achieve
conditional ignorability

• It is also an friendly and useful tool to understand the causal
inference

• Let’s use DAG to explore some important results for applied
research!

• Rule of DAG
• Confounder
• Collider
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Warmup Question 1: Mediator

• Question: Can we condition on Mi?

• Implication: You are not allowed to condition on post-treatment
variable

• This tells us the causal mechanism only under stringent assumption
(Blackwell et al. WP)

• We will learn how to deal with this in Module 9
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Warmup Question 2: Moderator

• Question: Can we condition on Mi?

• Implication: You can condition on pre-treatment variable to
explore heterogeneity

• CATE: E[Yi(1) − Yi(0) | Mi ]
• You cannot condition on post-treatment variable for this purpose
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Problem 1: Table 2 Fallacy
• Question: Suppose you are estimating the effect of Ti on Yi by

controlling Ci by regression. You know the sign of Ci in regresssion.
Can you interpret the coefficient of Ci?

• Implication: You should not interpret the coefficient of control
variable!

• In order to interpret Ci causally, you need to control the confounder
of Ci .

• This mistake is often called as Table 2 Fallacy (Westreich and
Greenland 2013)
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Problem 2: M-Bias
• Question: Suppose U is unobserved. Can we achieve ignorability

by conditioning observed Mi?

• Implication: Controlling the variable that time-wise precedes the
treatment can induce the bias

• Without drawing DAG, you can suffer from collider bias even though
you only control pre-treatment variable

• This is known as M-Bias
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Problem 3: Post-Instrument Variable

• Question: Consider the IV scenario. We know instrument Zi
influences outcome Yi through Ci . Can we condition on Ci to
achieve exclusion restriction?

• Implication: You cannot condition on the variable that is
influenced by instrument to achieve exclusion restriction

• Controlling Ci makes Zi no longer exogeneous
• This is known as Post-Instrument Bias (Schuessler et al. 2025)
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Partial Identification

• Partial Identification: How much can we know with the minimal
amount of assumptions we are willing to make?

• The more we make assumptions, the more we gains
• The credibility of inference decreases with the strength of the

assumptions maintained

• Tips
• Write down all the constraints (sum of probability, probability is

non-negative, etc)
• Combine every constraints to create the bound
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Partial Identification: IV and ATE (1)
• Let’s review the case of instrumental variable in the lecture.

• Setup: Binary instrument Zi , treatment Ti , outcome Yi

P(Yi(Ti = 1) = 1)
= P(Yi(Ti = 1) = 1 | Zi = 1) (∵ Randomization)
= P(Yi(Ti = 1) = 1 | Ti = 1, Zi = 1) × P(Ti = 1 | Zi = z)

+ P(Yi(Ti = 1) = 1 | Ti = 0, Zi = 1) × P(Ti = 0 | Zi = z)

• By exclusion restriction and consistency
P(Yi(Ti = 1) = 1 | Ti = 1, Zi = 1) = P(Yi = 1 | Ti = 1, Zi = 1)

• The similar derivation holds for Ti = 0; i.e.,
P(Yi(Ti = 0) = 1)
= P(Yi(Ti = 0) = 1 | Ti = 1, Zi = 0)︸ ︷︷ ︸

Not identifiable

×P(Ti = 1 | Zi = 0)

+ P(Yi = 1 | Ti = 0, Zi = 0) × (1 − P(Ti = 1 | Zi = 0)︸ ︷︷ ︸
=P(Ti =0|Zi =0)

)
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Partial Identification: IV and ATE (2)
• As a result, ATE is obtained as

τ = P(Yi(Ti = 1) = 1) − P(Yi(Ti = 0) = 1)
= P(Yi = 1 | Ti = 1, Zi = 1) × P(Ti = 1 | Zi = z)
+ P(Yi(Ti = 1) = 1 | Ti = 0, Zi = 1)︸ ︷︷ ︸

Not Identifiable

×(1 − P(Ti = 1 | Zi = z))

− P(Yi(Ti = 0) = 1 | Ti = 1, Zi = 0)︸ ︷︷ ︸
Not identifiable

×P(Ti = 1 | Zi = 0)

− P(Yi = 1 | Ti = 0, Zi = 0) × (1 − P(Ti = 1 | Zi = 0))

• However, there are two terms we cannot identify.
• Instead, think about the maximum and minimum values τ can take
• Recall that probability is bounded between 0 and 1
• Maximum is when P(Yi(Ti = 1) = 1 | Ti = 0, Zi = 1) = 1 and

P(Yi(Ti = 0) = 1 | Ti = 1, Zi = 0) = 0
• Minimum is when when P(Yi(Ti = 1) = 1 | Ti = 0, Zi = 1) = 0 and

P(Yi(Ti = 0) = 1 | Ti = 1, Zi = 0) = 1
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Sharp Bounds (1)
• Manski bound is not sharp!

• Sharp Bound: The bound with smallest width
• Sharp bounds need to use all the possible information in the data

• Let Ui = (Ti(1), Ti(0), Yi(1), Yi(0)). Then, notice that
τ = P(Yi(Ti = 1) = 1) − P(Yi(Ti = 0) = 1)

=
∑

u

(
P(Yi(1) = 1 | Ui = u) − P(Yi(0) = 1 | Ui = u)

)
P(Ui = u)

=
∑

u

(
1{Y (u)

i (1) = 1} − 1{Y (u)
i (0) = 1}

)
P(Ui = u)

=
∑

u

(
Y (u)

i (1) − Y (u)
i (0)

)
P(Ui = u) (∵ Yi is binary)

where
• Y (u)

i (t) is the value Yi(t) takes under the strata Ui = u

• As Ui = (Ti(1), Ti(0), Yi(1), Yi(0)) tells us Y (u)
i (1) − Y (u)

i (0),
once we identify P(Ui = u), we know ATE 12



Sharp Bounds (2)
• What condition does Ui need to satisfy?

Observed︷ ︸︸ ︷
P(Yi = 1, Ti = t, Zi = z)
= P(Yi(Ti(z)) = 1, Ti(z) = t, Zi = z)
= P(Yi(Ti(z)) = 1, Ti(z) = t)P(Zi = z) (∵ Randomization)
=

∑
u

P(Yi(Ti(z)) = 1, Ti(z) = t | Ui = u)P(Ui = u)P(Zi = z)

=
∑

u
1{Y (u)

i (T (u)
i (z)) = 1, T (u)

i (z) = t}︸ ︷︷ ︸
Determined by each strata

P(Ui = u)P(Zi = z)︸ ︷︷ ︸
Observed

where
• T (u)

i (z) is the value Ti(z) takes under the strata P(Ui = u) needs
to satisfy

• This becomes the constraint of P(Ui = u)
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Sharp Bounds (3): Optimization Problem
• Therefore, we can formalize the problem of obtaining upper / lower

bound as the following optimization problem
• Below is the one for obtaining the upper bound. For lower bound,

replace max with min.

max
pu

∑
u

(
Y (u)

i (1) − Y (u)
i (0)

)
pu︸ ︷︷ ︸

ATE

such that 0 ≤ pu ≤ 1,
∑

u
pu = 1

P(Yi = 1, Ti = t, Zi = z)

=
∑

u
1{Y (u)

i (T (u)
i (z)) = 1, T (u)

i (z) = t}P(Zi = z) × pu

where pu = P(Ui = u).

• This is the basic idea of automation of bounds (autobounds)
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Extra: What is linear programming

• Optimization problem contains two components:
• Objective function: the function to minimize / maximize
• Constraints that solution need to satisfy

• Standard approach: transform the optimization problem to the
specific form so that solver can solve automatically

• Linear programming: One form of optimization problem that can
be easily solved by solver

• Both constraint and objective function are linear

max
x

c⊤x

such that x ≥ 0, Ax ≤ b
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Partial Identification: Case of Binary Outcome (1)
• Let’s think about the binary outcome and treatment. We have the

following principal strata:

(Yi(0), Yi(1)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

• Suppose that we want to assign treatment to maximize the effect
Yi(1) − Yi(0)

• That is, assigning treatment to the strata (Yi(0), Yi(1)) = (0, 1)
and not assigning to the strata (Yi(0), Yi(1)) = (1, 0)

• The only people whose outcome is 0 is those in strata
(Yi(0), Yi(1)) = (0, 0)

• Question: How can we maximize the outcome value by optimizing
the treatment assignment?

• If we optimally assign the treatment effect, the observed outcome
δ will be
δ :=1 × P(Yi(0) = 1, Yi(1) = 1) + 1 × P(Yi(0) = 0, Yi(1) = 1)

+ 1 × P(Yi(0) = 1, Yi(1) = 0) + 0 × P(Yi(0) = 0, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (2)

• Now,

P(Yi(1) = 1) = P(Yi(0) = 0, Yi(1) = 1) + P(Yi(0) = 1, Yi(1) = 1)
P(Yi(0) = 1)︸ ︷︷ ︸

Identifiable

= P(Yi(0) = 1, Yi(1) = 0) + P(Yi(0) = 1, Yi(1) = 1)

but we do not observe the probability of each principal strata.

• But we know that

δ = P(Yi(1) = 1)︸ ︷︷ ︸
Identifiable

+P(Yi(0) = 1, Yi(1) = 0)

so we need to think about how to maximize
P(Yi(0) = 1, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (3)
• Let’s write down all the constraints:

• Firstly, each probability is bounded between 0 and 1
• Then, we can identify P(Yi(1) = 1) and P(Yi(0) = 1)

• In this case, each strata probability can be written as observed
quantity and P(Yi(0) = 1, Yi(1) = 0). I.e.,

0 ≤ P(Yi(0) = 1, Yi(1) = 0) ≤ 1
0 ≤ P(Yi = 1 | Ti = 0) − P(Yi(0) = 1, Yi(1) = 0)︸ ︷︷ ︸

=P(Yi (0)=1,Yi (1)=1)

≤ 1

• You can also derive P(Yi(0) = 0, Yi(1) = 1) and
P(Yi(0) = 0, Yi(1) = 0)

• Under these constraints, think about how much you can maximize
the quantity of interest.
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