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Logistics

e Problem Set 7 is due on Next Monday
e From PS7, we release problem set every monday and due on next
monday
e You need to submit 3 out of 5 problem set
e If you submit revenge midterm, it is counted as 1 submission

e Today's agenda
e Directed Acyclic Graph / Structural Causal Model
e Partial Identification (Problem Set 7)



Directed Acyclic Graph
e DAG: Directed Acyclic Graph

e Tool to know which variable you need to condition on to achieve
conditional ignorability
e It is also an friendly and useful tool to understand the causal

inference
e Let's use DAG to explore some important results for applied
research!
e Rule of DAG
e Confounder
e Collider



Warmup Question 1: Mediator

e Question: Can we condition on M;?

O—w—

e Implication: You are not allowed to condition on post-treatment
variable
e This tells us the causal mechanism only under stringent assumption
(Blackwell et al. WP)
e We will learn how to deal with this in Module 9



Warmup Question 2: Moderator

e Question: Can we condition on M;?

(7))
M (1) Y

e Implication: You can condition on pre-treatment variable to

explore heterogeneity
o CATE: E[Y/(1) — Yi(0) | Mi]
e You cannot condition on post-treatment variable for this purpose



Problem 1: Table 2 Fallacy

e Question: Suppose you are estimating the effect of T; on Y; by
controlling C; by regression. You know the sign of C; in regresssion.

Can you interpret the coefficient of C;?

e Implication: You should not interpret the coefficient of control

variable!
e In order to interpret C; causally, you need to control the confounder

of C,'.
e This mistake is often called as Table 2 Fallacy (Westreich and

Greenland 2013)



Problem 2: M-Bias

e Question: Suppose U is unobserved. Can we achieve ignorability
by conditioning observed M;?

U, T

U, Y

e Implication: Controlling the variable that time-wise precedes the
treatment can induce the bias
e Without drawing DAG, you can suffer from collider bias even though
you only control pre-treatment variable
e This is known as M-Bias



Problem 3: Post-Instrument Variable

e Question: Consider the IV scenario. We know instrument Z;
influences outcome Y; through C;. Can we condition on C; to
achieve exclusion restriction?

e Implication: You cannot condition on the variable that is
influenced by instrument to achieve exclusion restriction
e Controlling C; makes Z; no longer exogeneous
e This is known as Post-Instrument Bias (Schuessler et al. 2025)



Partial Identification

e Partial Identification: How much can we know with the minimal
amount of assumptions we are willing to make?
e The more we make assumptions, the more we gains
e The credibility of inference decreases with the strength of the
assumptions maintained

e Tips
e Write down all the constraints (sum of probability, probability is
non-negative, etc)
e Combine every constraints to create the bound



Partial Identification: IV and ATE (1)

Let's review the case of instrumental variable in the lecture.
e Setup: Binary instrument Z;, treatment T;, outcome Y;

P(Yi(Ti=1)=1)
=P(Yi(Ti=1)=1|Z =1) (. Randomization)

=P(Y(Ti=1)=1|T;=1,Z=1)xP(Ti=1]| Z = z)
P(Y(Ti=1)=1|T;=0,Z=1)xP(T; =0| Z; = 2)

By exclusion restriction and consistency
P(Y(Ti=1)=1|T;=1,Z=1)=P(Y;=1|T;=1,Z=1)
The similar derivation holds for T; = 0; i.e.,
P(Yi(Ti=0) =1)
=P(Yi(T;i=0)=1|T;=1,Z=0)xP(T; =1| Z =0)
Not identifiable
+P(Y;=1|T;=0,Z=0)x (1-P(T;=1| Z = 0))

=P(T;=0/Z;=0)
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Partial Identification: IV and ATE (2)

e As a result, ATE is obtained as

T=P(Y(Ti=1)=1)-P(Yi(T; =0)=1)
—P(Yi=1|Ti=1,Z =) xPB(T:=1|Z = 2)
FP(Y(Ti=1)=1|T;=0,Z =1)x(1-P(Ti = 1| Z = 2))
Not Identifiable
—P(Y{(Ti=0)=1|T,=1,Z =0)xP(T;=1]| Z =0)
Not identifiable

_P(Y;=1|T;=0,Z=0)x(1-P(Ti=1| Z =0))

e However, there are two terms we cannot identify.

Instead, think about the maximum and minimum values 7 can take

Recall that probability is bounded between 0 and 1

Maximum is when P(Y;(T; =1)=1| T,=0,Z =1)=1 and

B(Y/(T;=0)=1| T,=1,Z =0)=0

e Minimum is when when P(Y;(T;, =1)=1|T; =0,Z =1) =0 and
B(Y{(T;=0)=1|T,=1,Z =0) =1
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Sharp Bounds (1)

e Manski bound is not sharp!
e Sharp Bound: The bound with smallest width
e Sharp bounds need to use all the possible information in the data

e Let U; =(T;(1), T;(0), Yi(1), Yi(0)). Then, notice that
T=P(Yi(T;=1)=1)-P(Yi(T; =0)=1)

— 3 (POHU) = 1] Ui = )~ B(Yi(0) = 1| U; = ) | B(U; = )

u

— ¥ (1YW = 1} - 1Y) = 1} )P(U; = )

- Z(y}“)u) - Y,.(“)(O)>IP>(U,- —u) (. Yiis binary)

where
o Y.(")(t) is the value Y;(t) takes under the strata U; = u

1

o As U; = (Ti(1), T:(0), Yi(1), Yi(0)) tells us Y (1) — Y{*)(0),
once we identify P(U; = u), we know ATE
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Sharp Bounds (2)

e What condition does U; need to satisfy?

Observed
P(Y;=1,T;=t,2Z = z)
=P(Yi(Ti(2))=1,Ti(z) =t,Z; = )
=P(Yi(Ti(2)) =1, Ti(z) = t)P ( = z) (".- Randomization)
= P(Yi(Ti(2)) =1, Ti(2) = t | U; = u)P(U; = u)P(Z; = z)
=> 1{Y,-(“)(T,-(“)<z)) =1, T,-(“)<z) = t} P(U; = u) P(Z; = 7)
" Determined by each strata Observed
where
o T,-(”)(z) is the value T;(z) takes under the strata P(U; = u) needs
to satisfy

e This becomes the constraint of P(U; = u)



Sharp Bounds (3): Optimization Problem

e Therefore, we can formalize the problem of obtaining upper / lower
bound as the following optimization problem
e Below is the one for obtaining the upper bound. For lower bound,
replace max with min.

max > (Y,-(”)(l) — Y,-(”)(0)> Pu

u

ATE
such that 0 < p, <1, Zpu =1

P(Y,=1,T, =t Z-:z)
—ZI{Y T'2) =1, T{(2) = }B(Z = 2) x p,
where p, = P(U; = u).

e This is the basic idea of automation of bounds (autobounds)



Extra: What is linear programming

e Optimization problem contains two components:
e Objective function: the function to minimize / maximize
e Constraints that solution need to satisfy

e Standard approach: transform the optimization problem to the
specific form so that solver can solve automatically

e Linear programming: One form of optimization problem that can
be easily solved by solver
e Both constraint and objective function are linear

max CTX
X

such that x> 0,Ax <b
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Partial Identification: Case of Binary Outcome (1)

e Let's think about the binary outcome and treatment. We have the
following principal strata:

(Yi(0), Yi(1)) € {(0,0),(0,1),(1,0),(1,1)}
e Suppose that we want to assign treatment to maximize the effect
Yi(1) = Yi(0)
e That is, assigning treatment to the strata (Y;(0), Yi(1)) = (0,1)
and not assigning to the strata (Y;(0), Y;(1)) = (1,0)
e The only people whose outcome is O is those in strata
(Yi(0), Yi(1)) = (0,0)

e Question: How can we maximize the outcome value by optimizing
the treatment assignment?

e If we optimally assign the treatment effect, the observed outcome
0 will be
d:=1xP(Y;(0)=1,Y;(1)=1) +1xP(Y;(0)=0,Y;(1) =1)
+1xP(Y;(0)=1,Y;(1) =0)+ 0 x P(Y;(0) =0, Yi(1) = 0)
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Partial Identification: Case of Binary Outcome (2)

e Now,
P(Yi(1) = 1) = P(Yi(0) =0,
P(Y;(0) = 1) = B(¥;(0) = 1
Identifiable

but we do not observe the probability of each principal strata.

e But we know that
5 = B(Yi(1) = 1) +B(Y;(0) = 1, ¥i(1) = 0)
—_———
Identifiable

so we need to think about how to maximize
P(Yi(0) =1,Y(1) =0)
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Partial Identification: Case of Binary Outcome (3)

o Let's write down all the constraints:
e Firstly, each probability is bounded between 0 and 1
e Then, we can identify P(Y;(1) = 1) and P(Y;(0) =1)

e In this case, each strata probability can be written as observed
quantity and P(Y;(0) =1, Y;(1) = 0). l.e.,
0<P(Y;i(0)=1,Y;(1)=0) <
0<P(Y;=1|T; =0 —-P(Y;(0)=1,Y;(1)=0) <1
=P(Y;(0)=1,Yi(1)=1)

e You can also derive P(Y;(0) =0, Yj(1) = 1) and
P(Yi(0) =0, Yi(1) = 0)

e Under these constraints, think about how much you can maximize
the quantity of interest.
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