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Logistics

e Congratulations on finishing the midterm!

e Two homework
e Revenge Midterm (due October 27th 10am)
e Problem set 6 (due October 29th 10am)

e You need to submit 3 problem sets out of 5
e Revenge midterm is counted as one



Today’s Agenda

e Overview of Observational Studies

e Sharp RDD

Basic Setup / Intuition
e Estimand / Assumption
e l|dentification

e Estimation

e Fuzzy RDD (PSet Question 2)



Observational Studies: Overview

e From this week, we are in observational studies
e Difference: Lack of randomization

e Example: Does drinking coffee cause cancer?

Smoking

Drinking Coffee Cancer




Observational Studies: Overview
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e Randomization makes two group comparable
e Thus, difference-in-means works!



Observational Studies: Overview

e It is not the case for observational studies
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Observational Studies: Overview

e Basic Approach: Control all the confounders
e Confounders: Variables affecting both treatment and outcome

Smoking No Smoking
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e Requirement: Observe all the confounders
e Also, within each strata, there must exist counterparts of the
comparison




Observational Studies: Overview

For confounders C;, we formally need the followings:

Ignorability / Exchangeability :  Yi(t) LL T; | G
Positivity / Common Support: 0<P(T;=1|C) <1

We will cover these strategies in future modules
e Module 8: Controlling confounders
e Different ways of modeling (e.g., matching, weighting, regression)
e Module 7: Sensitivity analysis + Partial identification
e Checking credibility of assumptions

BUT this is really hard! We rarely observe all the confounders

Quasi-experimental design: Since we have no randomization, we
will use several designs to estimate the causal effect

e Module 5: Instrumental Variable

e Module 6: Regression Discontinuity Design (this week!)

e Module 10: Difference-in-Difference



Sharp RDD: Basic Setup and Intuition
T; € {0,1}: Treatment

X;: Running variable that perfectly determines the value of T;
with the cutpoint ¢

1 ifX,'ZC

Ti=1{Xi>c}= _
0 ifXi<c

Xi may be correlated with Y;(0) and Y;i(1) (i.e., no selection of
observable)

Simply adjusting running variable X; does not work because of lack
of overlap assumption

Intuition: At the cutpoint X; = ¢, assignment to treatment may
be as if random

e Only thing that differs is treatment assignment
But no local randomization is necessary

e See de la Cuesta and Imai (2016, ARPS)



Sharp RDD: Basic setup

Control Treatment
Y =Y(0) Y=Y(1)

Running Variable
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Sharp RDD: Estimand and Assumption

e Estimand: Average treatment effect on the threshold
T =E[Yi(1) = Yi(0) | Xi = ]

e Problem: External validity. Local ATE, applicable only to people at
the threshold

e Assumption: E[Y;(t) | X; = x] is continuous in x at X; = ¢ for
t=0,1
e Continuity — Does not change abruptly
O Formally, Iimx—>c E[Yl(t) ‘ Xi = X] = limx(—c]E[Yi(t) | Xi = X]
e Example of violation (sorting): students strategically retaking an
exam to just exceed a scholarship cutoff
e Barely below and above the cutoff is no longer as-if random
e Not the local randomization (randomization in the range)
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Sharp RDD: Identification
Now, the estimand is 7 = E[Y;(1) — Y;(0) | X; = ]

Then, for T, =1

E[Yi(1) | Xi =] = )!iLnCIE[Y,-(l) | Xi =x] (" continuity)
= )I(LnLIE[Y,- | Xi =x] (. consistency)
Similariy, for T; =0
E[Y;(0) | X; = c] = lim E[Y,(0) | X; = x] = lim E[Y; | X; = x
Therefore,

T:Iiin]E[Y,- | X; :x]—lipE[W | Xi = x]

=E[Y;(1)|Xi=c] =E[Yi(0)|Xj=c]
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Sharp RDD: Estimation

e |dentification formula is

T = IiinIE[Y,-\X,-:x] — IipE[mX,-:x]

Obtained from above threshold  Obtained from below Threshold

e You need to estimate the cutoff

e Fit two local linear regression: for treated,

argmin 310X > ¢}Yi — (X — BPK (™)

i=1
where
e 1{X; > c}: indicator for treated unit (for control, 1{X; < c})
o K[ %< is the weight (kernel)

e Regressor is centered by X; — ¢ so that « represnts the intercept at
X; = c (i.e., cutoff)
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Local Linear Regression

n XI _
arg miﬁn Z 1{X; > c}{Yi—a—(X; — c)B}? K(hc)
S Square of Errors ——
Kernel

e Kernel: Gives more weight around cutoff
e Recall that we want to model the local behavior around cutoff
e The regression above is special version of weighted least squares

uniform kernel: triangular kernel:
K(u) = 31{Jul < 1} K(u) = (1 = Ju)1{jul < 1}
= 0 -

e Bandwidth: determines how local the regression is
e Look at the value of running variable X; & h
e Optimal bandwidth: select bandwidth h so that it minimizes MSE
(Imbens and Kalyanaraman 2012)
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Review of Weighted Least Square

e Weighted Least Square: Weight the observation and solve OLS

e Formally, we minimize

mﬁin(Y — XB)TW(Y — Xp)

e Thus the first order condition is
;ﬁ(y — XB)TW(Y = XB) = —2XTW(Y — XB) =0

—f=X"Twx)"IXxTwy
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Local Linear Regression as a Weighted Regression
e Recall that local linear regression solves the minimization problem

n . )"’(
arg rglﬁn Z X > c}H{Y; — a — X;B}? K(h')
o= Square of Errors T

where 5(; =Xi—c
e Thus, the intercept & is obtained by
by =e (Z'WZ)1ZTwy
1T
where e; = {1 0} V2= {1 X,-} , and W = diag(W})
e You can see that & is a linear combination of outcome
e Indeed, we can explicitly write &1 with a weight Wi; i.e.,

M'/i 1 Zi'~' W)N< -
Gy = Z 7WY" where Vl/,-:VVI.(l_.X,zOJJX’_)

. . . X2
iX;i>0 Zi:X,-zO o Zi:XJzO VVJ)<J
S ——
=wj
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Why Local Linear Regression is good? (1)

Question: Why local linear regression?

Answer: Local linear regression behaves nicely at the boundary
e When you estimate a regression near a boundary, bias can appear
since there are fewer observations
e Local linear regression corrects this bias up to the first order

Let's see why it is the case.

Recall that we derive the estimator & is written as

by = Z LNY,-

i:X;>0 Z"XZO ok
= ———

=wj

and thus y ;
Elay | X] = Y wiE[Yi| X]
———

i X >0 <
= =p1(X;)
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Why Local Linear Regression is good? (2)

e Goal: Show E[&; | X] = E[Y; | X; = 0] + Small Bias

° LNet's consider Taylor expansion of conditional expectation around
Xi=0

~ =~ 1 " <
i (X5) = m(0) + p3(0)X; + S (0)XF +

e The higher-order terms tends to be small

e Therefore,
Elay | XK1= Y wiE[Y| X
i:X;>0 "

=1 (X))
1 "
( ) + 1#4(0)X; + Ml(o )
5(
1 "
Z wi+p3(0) Y wiXi+ 51 (0) Z P+
i:X;>0 i Xi>
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Why Local Linear Regression is good? (3)

e We can show that }_; 5~ wiX; is actually 0 (as local linear weight
is 0)
e Question 2 of PS6 (STAT)

e Takeaway: Bias at the boundary is zero up to first order

Ela | X] = pu(0) + ul ) > X+
IX>0

Bias

e If you use kth order local polynomial, bias is zero up to k-th order
e However, as k increases, the variance also increase
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Conditional Probability of Receiving Treatment
o

Fuzzy RDD: Intuition

e Fuzzy RDD: Instrumental variable version of RDD
e You have a running variable that does not perfectly determine the
treatment status
e e.g., eligibility of enrollment

Figure 1: Conditional Probability of Receiving Treatment in Sharp vs. Fuzzy RD Designs
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Fuzzy RDD: Setup and Estimand

e Setup
o Z; =1{X; > c}: instrument
e Instrument is determined by running variable
e T;: treatment

e Y;: outcome
e Potential outcome: Y;(Z; =z, T; = t)
e Estimand: LATE among complier at threshold

E[Yi(Zi =1, Ti = Ti(1)) - Yi(Z = 0, T; = T;(0)) | X; = c, Complier]
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Fuzzy RDD: Assumption and ldentification

e Assumptions: IV + Sharp RDD
e Monotonicity: T;(1) > T;(0)
e Exclusion restriction: Y;(0,t) = Y;(1,t)
e Continuity: E[T;(z) | X; = x| and E[Y;(z, Ti(z)) | X; = x] are
continuous in x

e Recall that the identification formula of IV is given by

Instrument Effect on Outcome (Z's effect on Y)
Instrument Effect on Treatment (Z's effect on T)

e As Instrument’s local effect is estimated by RDD, we use

|imX¢C E[Y, ‘ X,' = X] — ”mxTc]E[Yi ’ X,' = X]
Iime]E[T,- | X,' = X] = IimxfclE[T,- | X,' = X]
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