

Section: Module 6

Regression Discontinuity Design

Kentaro Nakamura

GOV 2002

October 24th, 2025

Logistics

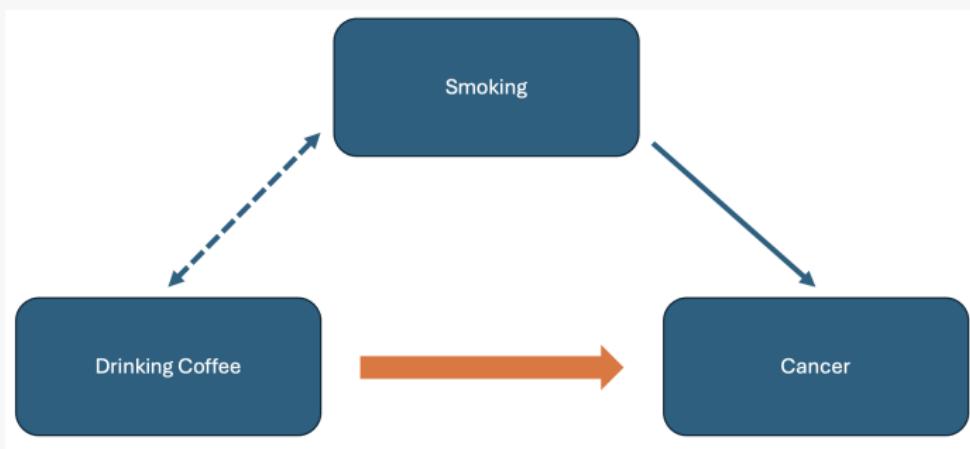
- Congratulations on finishing the midterm!
- Two homework
 - Revenge Midterm (due October 27th 10am)
 - Problem set 6 (due October 29th 10am)
- You need to submit 3 problem sets out of 5
 - Revenge midterm is counted as one

Today's Agenda

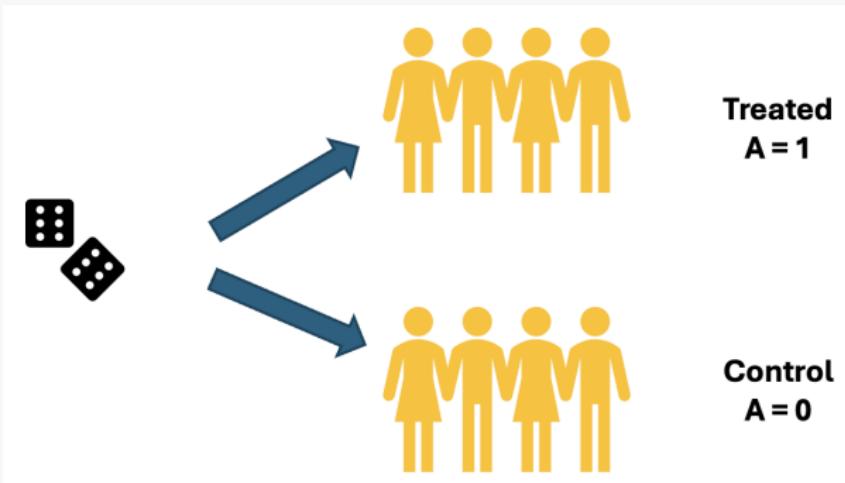
- Overview of Observational Studies
- Sharp RDD
 - Basic Setup / Intuition
 - Estimand / Assumption
 - Identification
 - Estimation
- Fuzzy RDD (PSet Question 2)

Observational Studies: Overview

- From this week, we are in observational studies
 - Difference: Lack of randomization
- Example: Does drinking coffee cause cancer?



Observational Studies: Overview

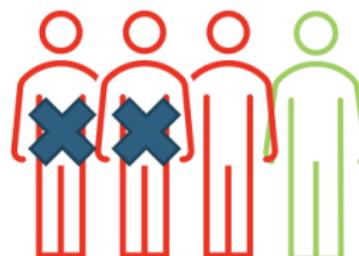


- Randomization makes two group comparable
 - Thus, difference-in-means works!

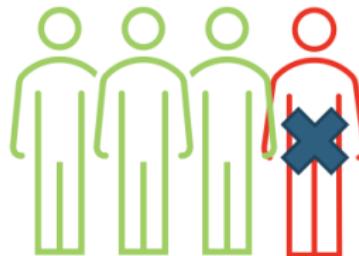
Observational Studies: Overview

- It is not the case for observational studies

Drinking Coffee
 $A = 1$

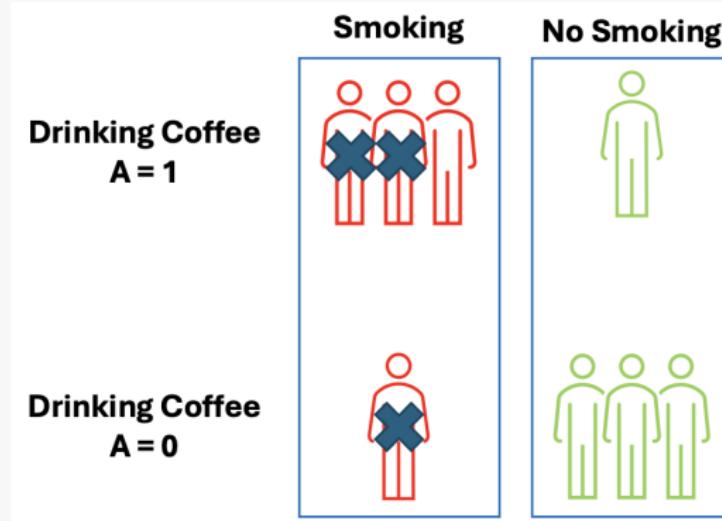


Drinking Coffee
 $A = 0$



Observational Studies: Overview

- Basic Approach: Control all the confounders
 - **Confounders:** Variables affecting both treatment and outcome



- Requirement: Observe all the confounders
 - Also, within each strata, there must exist counterparts of the comparison

Observational Studies: Overview

- For confounders C_i , we formally need the followings:

Ignorability / Exchangeability : $Y_i(t) \perp\!\!\!\perp T_i \mid C_i$

Positivity / Common Support : $0 < \mathbb{P}(T_i = 1 \mid C_i) < 1$

- We will cover these strategies in future modules
 - Module 8: Controlling confounders
 - Different ways of modeling (e.g., matching, weighting, regression)
 - Module 7: Sensitivity analysis + Partial identification
 - Checking credibility of assumptions
- BUT this is really hard! We rarely observe all the confounders
- **Quasi-experimental design:** Since we have no randomization, we will use several designs to estimate the causal effect
 - Module 5: Instrumental Variable
 - Module 6: Regression Discontinuity Design (this week!)
 - Module 10: Difference-in-Difference

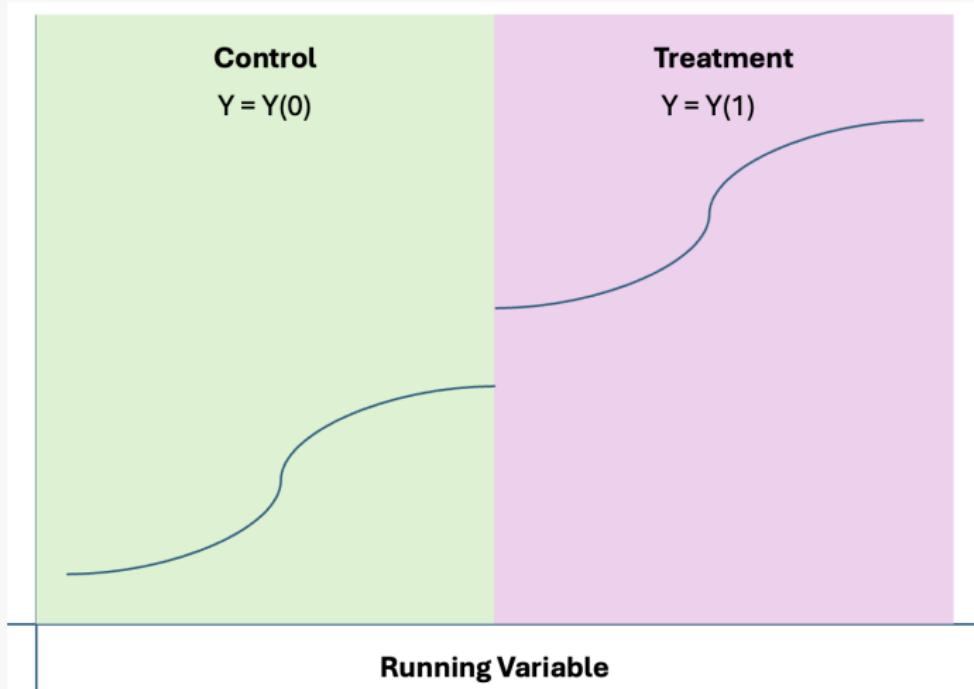
Sharp RDD: Basic Setup and Intuition

- $T_i \in \{0, 1\}$: Treatment
- X_i : **Running variable** that perfectly determines the value of T_i with the cutpoint c

$$T_i = \mathbf{1}\{X_i \geq c\} = \begin{cases} 1 & \text{if } X_i \geq c \\ 0 & \text{if } X_i < c \end{cases}$$

- X_i may be correlated with $Y_i(0)$ and $Y_i(1)$ (i.e., no selection of observable)
- Simply adjusting running variable X_i does not work because of lack of overlap assumption
- **Intuition:** At the cutpoint $X_i = c$, assignment to treatment may be as if random
 - Only thing that differs is treatment assignment
 - But no local randomization is necessary
 - See de la Cuesta and Imai (2016, ARPS)

Sharp RDD: Basic setup



Sharp RDD: Estimand and Assumption

- **Estimand:** Average treatment effect **on the threshold**

$$\tau = \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = c]$$

- Problem: External validity. **Local** ATE, applicable only to people at the threshold
- **Assumption:** $\mathbb{E}[Y_i(t) \mid X_i = x]$ is continuous in x at $X_i = c$ for $t = 0, 1$
 - Continuity \rightarrow Does not change abruptly
 - Formally, $\lim_{x \rightarrow c} \mathbb{E}[Y_i(t) \mid X_i = x] = \lim_{x \leftarrow c} \mathbb{E}[Y_i(t) \mid X_i = x]$
 - Example of violation (sorting): students strategically retaking an exam to just exceed a scholarship cutoff
 - Barely below and above the cutoff is no longer as-if random
 - Not the local randomization (randomization in the range)

Sharp RDD: Identification

- Now, the estimand is $\tau = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = c]$
- Then, for $T_i = 1$

$$\begin{aligned}\mathbb{E}[Y_i(1) | X_i = c] &= \lim_{x \leftarrow c} \mathbb{E}[Y_i(1) | X_i = x] \quad (\because \text{continuity}) \\ &= \lim_{x \leftarrow c} \mathbb{E}[Y_i | X_i = x] \quad (\because \text{consistency})\end{aligned}$$

- Similarly, for $T_i = 0$

$$\mathbb{E}[Y_i(0) | X_i = c] = \lim_{x \rightarrow c} \mathbb{E}[Y_i(0) | X_i = x] = \lim_{x \rightarrow c} \mathbb{E}[Y_i | X_i = x]$$

- Therefore,

$$\begin{aligned}\tau &= \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x]}_{= \mathbb{E}[Y_i(1) | X_i = c]} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}_{= \mathbb{E}[Y_i(0) | X_i = c]}\end{aligned}$$

Sharp RDD: Estimation

- Identification formula is

$$\tau = \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x]}_{\text{Obtained from above threshold}} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}_{\text{Obtained from below Threshold}}$$

- You need to estimate **the cutoff**
- Fit two **local linear regression**: for treated,

$$\arg \min_{\alpha, \beta} \sum_{i=1}^n \mathbf{1}\{X_i \geq c\} \{Y_i - \alpha - (X_i - c)\beta\}^2 K\left(\frac{X_i - c}{h}\right)$$

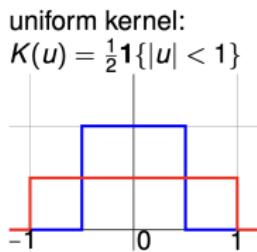
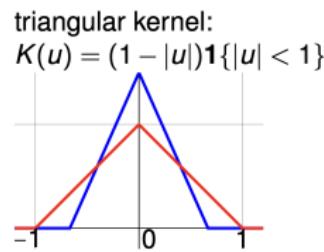
where

- $\mathbf{1}\{X_i \geq c\}$: indicator for treated unit (for control, $\mathbf{1}\{X_i \leq c\}$)
- $K\left(\frac{X_i - c}{h}\right)$ is the weight (kernel)
- Regressor is centered by $X_i - c$ so that α represents the intercept at $X_i = c$ (i.e., cutoff)

Local Linear Regression

$$\arg \min_{\alpha, \beta} \sum_{i=1}^n \mathbf{1}\{X_i \geq c\} \underbrace{\{Y_i - \alpha - (X_i - c)\beta\}^2}_{\text{Square of Errors}} \underbrace{K\left(\frac{X_i - c}{h}\right)}_{\text{Kernel}}$$

- **Kernel:** Gives more weight around cutoff
 - Recall that we want to model the local behavior around cutoff
 - The regression above is special version of weighted least squares



- **Bandwidth:** determines how local the regression is
 - Look at the value of running variable $X_i \pm h$
 - **Optimal bandwidth:** select bandwidth h so that it minimizes MSE (Imbens and Kalyanaraman 2012)

Review of Weighted Least Square

- **Weighted Least Square:** Weight the observation and solve OLS
- Formally, we minimize

$$\min_{\beta} (Y - X\beta)^{\top} W (Y - X\beta)$$

- Thus the first order condition is

$$\begin{aligned}\frac{\partial}{\partial \beta} (Y - X\beta)^{\top} W (Y - X\beta) &= -2X^{\top} W (Y - X\beta) = 0 \\ \rightarrow \hat{\beta} &= (X^{\top} W X)^{-1} X^{\top} W Y\end{aligned}$$

Local Linear Regression as a Weighted Regression

- Recall that local linear regression solves the minimization problem

$$\arg \min_{\alpha, \beta} \sum_{i=1}^n \mathbf{1}\{X_i \geq c\} \underbrace{\{Y_i - \alpha - \tilde{X}_i \beta\}^2}_{\text{Square of Errors}} \underbrace{K\left(\frac{\tilde{X}_i}{h}\right)}_{=W_i}$$

where $\tilde{X}_i = X_i - c$

- Thus, the intercept $\hat{\alpha}$ is obtained by

$$\hat{\alpha}_+ = \mathbf{e}_1^\top (\mathbf{Z}^\top \mathbf{W} \mathbf{Z})^{-1} \mathbf{Z}^\top \mathbf{W} \mathbf{Y}$$

where $\mathbf{e}_1 = [1 \ 0]^\top$, $\mathbf{Z}_i = [1 \ \tilde{X}_i]^\top$, and $\mathbf{W} = \text{diag}(W_i)$

- You can see that $\hat{\alpha}_+$ is a linear combination of outcome
- Indeed, we can explicitly write $\hat{\alpha}_+$ with a weight \tilde{W}_i ; i.e.,

$$\hat{\alpha}_+ = \sum_{i: \tilde{X}_i \geq 0} \underbrace{\frac{\tilde{W}_i}{\sum_{j: \tilde{X}_j \geq 0} \tilde{W}_j}}_{=\omega_i} Y_i \quad \text{where} \quad \tilde{W}_i = W_i \left(1 - \frac{\sum_{j: \tilde{X}_j \geq 0} W_j \tilde{X}_j}{\sum_{j: \tilde{X}_j \geq 0} W_j \tilde{X}_j^2} \tilde{X}_i\right)$$

Why Local Linear Regression is good? (1)

- **Question:** Why local linear regression?
- **Answer:** Local linear regression behaves nicely at the boundary
 - When you estimate a regression near a boundary, bias can appear since there are fewer observations
 - Local linear regression corrects this bias up to the first order
- Let's see why it is the case.
- Recall that we derive the estimator $\hat{\alpha}_+$ is written as

$$\hat{\alpha}_+ = \sum_{i:\tilde{X}_i \geq 0} \frac{\tilde{W}_i}{\underbrace{\sum_{i:\tilde{X}_i \geq 0} \tilde{W}_i}_{=\omega_i}} Y_i$$

and thus

$$\mathbb{E}[\hat{\alpha}_+ \mid \tilde{\mathbf{X}}] = \sum_{i:\tilde{X}_i \geq 0} \omega_i \underbrace{\mathbb{E}[Y_i \mid \tilde{X}_i]}_{=\mu_1(\tilde{X}_i)}$$

Why Local Linear Regression is good? (2)

- **Goal:** Show $\mathbb{E}[\hat{\alpha}_+ | \tilde{\mathbf{X}}] = \mathbb{E}[Y_i | \tilde{X}_i = 0] + \text{Small Bias}$
- Let's consider Taylor expansion of conditional expectation around $\tilde{X}_i = 0$

$$\mu_1(\tilde{X}_i) = \mu_1(0) + \mu'_1(0)\tilde{X}_i + \frac{1}{2}\mu''_1(0)\tilde{X}_i^2 + \dots$$

- The higher-order terms tends to be small
- Therefore,

$$\begin{aligned}\mathbb{E}[\hat{\alpha}_+ | \tilde{\mathbf{X}}] &= \sum_{i: \tilde{X}_i \geq 0} \omega_i \underbrace{\mathbb{E}[Y_i | \tilde{X}_i]}_{=\mu_1(\tilde{X}_i)} \\ &= \sum_{i: \tilde{X}_i \geq 0} \omega_i \left(\mu_1(0) + \mu'_1(0)\tilde{X}_i + \frac{1}{2}\mu''_1(0)\tilde{X}_i^2 + \dots \right) \\ &= \mu_1(0) \underbrace{\sum_{i: \tilde{X}_i \geq 0} \omega_i}_{=1} + \mu'_1(0) \sum_{i: \tilde{X}_i \geq 0} \omega_i \tilde{X}_i + \frac{1}{2}\mu''_1(0) \sum_{i: \tilde{X}_i \geq 0} \tilde{X}_i^2 + \dots\end{aligned}$$

Why Local Linear Regression is good? (3)

- We can show that $\sum_{i:\tilde{X}_i \geq 0} \omega_i \tilde{X}_i$ is actually 0 (as local linear weight is 0)
 - Question 2 of PS6 (STAT)
- **Takeaway:** Bias at the boundary is zero up to first order

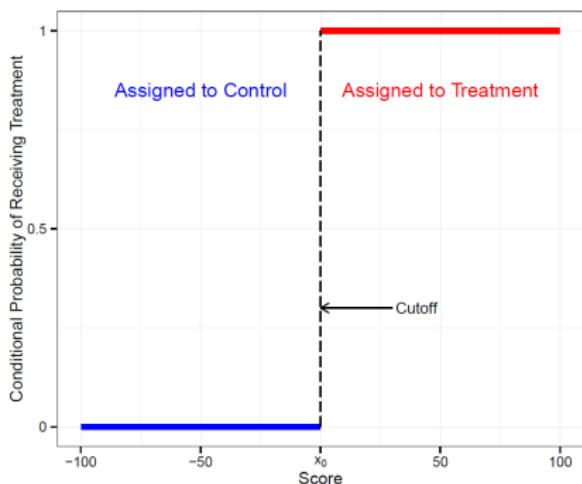
$$\mathbb{E}[\hat{\alpha}_+ \mid \tilde{\mathbf{X}}] = \mu_1(0) + \underbrace{\frac{1}{2} \mu_1''(0) \sum_{i:\tilde{X}_i \geq 0} \tilde{X}_i^2}_{\text{Bias}} + \dots$$

- If you use k th order local polynomial, bias is zero up to k -th order
- However, as k increases, the variance also increase

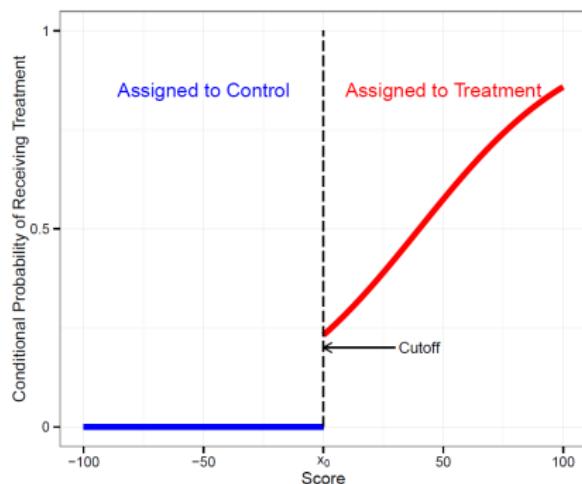
Fuzzy RDD: Intuition

- **Fuzzy RDD:** Instrumental variable version of RDD
 - You have a running variable that does not perfectly determine the treatment status
 - e.g., eligibility of enrollment

Figure 1: Conditional Probability of Receiving Treatment in Sharp vs. Fuzzy RD Designs



(a) Sharp RD



(b) Fuzzy RD (One-Sided)

Fuzzy RDD: Setup and Estimand

- Setup
 - $Z_i = \mathbf{1}\{X_i \geq c\}$: instrument
 - Instrument is determined by running variable
 - T_i : treatment
 - Y_i : outcome
 - Potential outcome: $Y_i(Z_i = z, T_i = t)$
- **Estimand:** LATE among complier at threshold

$$\mathbb{E}[Y_i(Z_i = 1, T_i = T_i(1)) - Y_i(Z_i = 0, T_i = T_i(0)) \mid X_i = c, \text{Complier}]$$

Fuzzy RDD: Assumption and Identification

- **Assumptions:** IV + Sharp RDD
 - Monotonicity: $T_i(1) \geq T_i(0)$
 - Exclusion restriction: $Y_i(0, t) = Y_i(1, t)$
 - Continuity: $\mathbb{E}[T_i(z) | X_i = x]$ and $\mathbb{E}[Y_i(z, T_i(z)) | X_i = x]$ are continuous in x
- Recall that the identification formula of IV is given by

$$\frac{\text{Instrument Effect on Outcome (Z's effect on Y)}}{\text{Instrument Effect on Treatment (Z's effect on T)}}$$

- As Instrument's local effect is estimated by RDD, we use

$$\frac{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[T_i | X_i = x] - \lim_{x \uparrow c} \mathbb{E}[T_i | X_i = x]}$$