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Logistics

• Congratulations on finishing the midterm!

• Two homework
• Revenge Midterm (due October 27th 10am)
• Problem set 6 (due October 29th 10am)

• You need to submit 3 problem sets out of 5
• Revenge midterm is counted as one
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Today’s Agenda

• Overview of Observational Studies

• Sharp RDD
• Basic Setup / Intuition
• Estimand / Assumption
• Identification
• Estimation

• Fuzzy RDD (PSet Question 2)
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Observational Studies: Overview

• From this week, we are in observational studies
• Difference: Lack of randomization

• Example: Does drinking coffee cause cancer?

4



Observational Studies: Overview

• Randomization makes two group comparable
• Thus, difference-in-means works!
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Observational Studies: Overview
• It is not the case for observational studies
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Observational Studies: Overview
• Basic Approach: Control all the confounders

• Confounders: Variables affecting both treatment and outcome

• Requirement: Observe all the confounders
• Also, within each strata, there must exist counterparts of the

comparison
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Observational Studies: Overview
• For confounders Ci , we formally need the followings:

Ignorability / Exchangeability : Yi(t) ⊥⊥ Ti | Ci

Positivity / Common Support : 0 < P(Ti = 1 | Ci) < 1

• We will cover these strategies in future modules
• Module 8: Controlling confounders

• Different ways of modeling (e.g., matching, weighting, regression)
• Module 7: Sensitivity analysis + Partial identification

• Checking credibility of assumptions

• BUT this is really hard! We rarely observe all the confounders

• Quasi-experimental design: Since we have no randomization, we
will use several designs to estimate the causal effect

• Module 5: Instrumental Variable
• Module 6: Regression Discontinuity Design (this week!)
• Module 10: Difference-in-Difference
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Sharp RDD: Basic Setup and Intuition
• Ti ∈ {0, 1}: Treatment
• Xi : Running variable that perfectly determines the value of Ti

with the cutpoint c

Ti = 1{Xi ≥ c} =
{

1 if Xi ≥ c
0 if Xi < c

• Xi may be correlated with Yi(0) and Yi(1) (i.e., no selection of
observable)

• Simply adjusting running variable Xi does not work because of lack
of overlap assumption

• Intuition: At the cutpoint Xi = c, assignment to treatment may
be as if random

• Only thing that differs is treatment assignment

• But no local randomization is necessary
• See de la Cuesta and Imai (2016, ARPS)
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Sharp RDD: Basic setup

10



Sharp RDD: Estimand and Assumption

• Estimand: Average treatment effect on the threshold

τ = E[Yi(1) − Yi(0) | Xi = c]

• Problem: External validity. Local ATE, applicable only to people at
the threshold

• Assumption: E[Yi(t) | Xi = x ] is continuous in x at Xi = c for
t = 0, 1

• Continuity → Does not change abruptly
• Formally, limx→c E[Yi(t) | Xi = x ] = limx←c E[Yi(t) | Xi = x ]
• Example of violation (sorting): students strategically retaking an

exam to just exceed a scholarship cutoff
• Barely below and above the cutoff is no longer as-if random

• Not the local randomization (randomization in the range)
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Sharp RDD: Identification
• Now, the estimand is τ = E[Yi(1) − Yi(0) | Xi = c]

• Then, for Ti = 1

E[Yi(1) | Xi = c] = lim
x←c

E[Yi(1) | Xi = x ] (∵ continuity)

= lim
x←c

E[Yi | Xi = x ] (∵ consistency)

• Similariy, for Ti = 0

E[Yi(0) | Xi = c] = lim
x→c

E[Yi(0) | Xi = x ] = lim
x→c

E[Yi | Xi = x ]

• Therefore,

τ = lim
x↓c

E[Yi | Xi = x ]︸ ︷︷ ︸
=E[Yi (1)|Xi =c]

− lim
x↑c

E[Yi | Xi = x ]︸ ︷︷ ︸
=E[Yi (0)|Xi =c]
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Sharp RDD: Estimation
• Identification formula is

τ = lim
x↓c

E[Yi | Xi = x ]︸ ︷︷ ︸
Obtained from above threshold

− lim
x↑c

E[Yi | Xi = x ]︸ ︷︷ ︸
Obtained from below Threshold

• You need to estimate the cutoff
• Fit two local linear regression: for treated,

arg min
α,β

n∑
i=1

1{Xi ≥ c}{Yi − α − (Xi − c)β}2K
(Xi − c

h

)
where

• 1{Xi ≥ c}: indicator for treated unit (for control, 1{Xi ≤ c})

• K
(

Xi−c
h

)
is the weight (kernel)

• Regressor is centered by Xi − c so that α represnts the intercept at
Xi = c (i.e., cutoff)
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Local Linear Regression

arg min
α,β

n∑
i=1

1{Xi ≥ c} {Yi − α − (Xi − c)β}2︸ ︷︷ ︸
Square of Errors

K
(Xi − c

h

)
︸ ︷︷ ︸

Kernel

• Kernel: Gives more weight around cutoff
• Recall that we want to model the local behavior around cutoff
• The regression above is special version of weighted least squares

• Bandwidth: determines how local the regression is
• Look at the value of running variable Xi ± h
• Optimal bandwidth: select bandwidth h so that it minimizes MSE

(Imbens and Kalyanaraman 2012)
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Review of Weighted Least Square

• Weighted Least Square: Weight the observation and solve OLS

• Formally, we minimize

min
β

(Y − Xβ)⊤W (Y − Xβ)

• Thus the first order condition is

∂

∂β
(Y − Xβ)⊤W (Y − Xβ) = −2X⊤W (Y − Xβ) = 0

→ β̂ = (X⊤WX )−1X⊤WY
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Local Linear Regression as a Weighted Regression
• Recall that local linear regression solves the minimization problem

arg min
α,β

n∑
i=1

1{Xi ≥ c} {Yi − α − X̃iβ}2︸ ︷︷ ︸
Square of Errors

K
( X̃i

h

)
︸ ︷︷ ︸

=Wi

where X̃i = Xi − c

• Thus, the intercept α̂ is obtained by
α̂+ = e⊤1 (Z⊤W Z)−1Z⊤W Y

where e1 =
[
1 0

]⊤
, Z i =

[
1 X̃i

]⊤
, and W = diag(Wi)

• You can see that α̂+ is a linear combination of outcome

• Indeed, we can explicitly write α̂+ with a weight W̃i ; i.e.,

α̂+ =
∑

i :X̃i≥0

W̃i∑
i :X̃i≥0 W̃i︸ ︷︷ ︸

=ωi

Yi where W̃i = Wi

(
1−

∑
i :X̃j≥0 Wj X̃j∑
i :X̃j≥0 Wj X̃ 2

j
X̃i

)
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Why Local Linear Regression is good? (1)
• Question: Why local linear regression?

• Answer: Local linear regression behaves nicely at the boundary
• When you estimate a regression near a boundary, bias can appear

since there are fewer observations
• Local linear regression corrects this bias up to the first order

• Let’s see why it is the case.

• Recall that we derive the estimator α̂+ is written as

α̂+ =
∑

i :X̃i≥0

W̃i∑
i :X̃i≥0 W̃i︸ ︷︷ ︸

=ωi

Yi

and thus
E[α̂+ | X̃ ] =

∑
i :X̃i≥0

ωi E[Yi | X̃i ]︸ ︷︷ ︸
=µ1(X̃i )
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Why Local Linear Regression is good? (2)
• Goal: Show E[α̂+ | X̃ ] = E[Yi | X̃i = 0] + Small Bias
• Let’s consider Taylor expansion of conditional expectation around

X̃i = 0

µ1(X̃i) = µ1(0) + µ′1(0)X̃i + 1
2µ

′′
1(0)X̃ 2

i + · · ·

• The higher-order terms tends to be small

• Therefore,
E[α̂+ | X̃ ] =

∑
i :X̃i≥0

ωi E[Yi | X̃i ]︸ ︷︷ ︸
=µ1(X̃i )

=
∑

i :X̃i≥0

ωi

(
µ1(0) + µ′1(0)X̃i + 1

2µ
′′
1(0)X̃ 2

i + · · ·
)

= µ1(0)
∑

i :X̃i≥0

ωi

︸ ︷︷ ︸
=1

+µ′1(0)
∑

i :X̃i≥0

ωi X̃i + 1
2µ

′′
1(0)

∑
i :X̃i≥0

X̃ 2
i + · · ·
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Why Local Linear Regression is good? (3)

• We can show that
∑

i :X̃i≥0 ωi X̃i is actually 0 (as local linear weight
is 0)

• Question 2 of PS6 (STAT)

• Takeaway: Bias at the boundary is zero up to first order

E[α̂+ | X̃ ] = µ1(0) + 1
2µ

′′
1(0)

∑
i :X̃i≥0

X̃ 2
i + · · ·

︸ ︷︷ ︸
Bias

• If you use kth order local polynomial, bias is zero up to k-th order
• However, as k increases, the variance also increase
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Fuzzy RDD: Intuition
• Fuzzy RDD: Instrumental variable version of RDD

• You have a running variable that does not perfectly determine the
treatment status

• e.g., eligibility of enrollment
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Fuzzy RDD: Setup and Estimand

• Setup
• Zi = 1{Xi ≥ c}: instrument

• Instrument is determined by running variable
• Ti : treatment
• Yi : outcome
• Potential outcome: Yi(Zi = z , Ti = t)

• Estimand: LATE among complier at threshold

E[Yi(Zi = 1, Ti = Ti(1)) − Yi(Zi = 0, Ti = Ti(0)) | Xi = c, Complier]
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Fuzzy RDD: Assumption and Identification

• Assumptions: IV + Sharp RDD
• Monotonicity: Ti(1) ≥ Ti(0)
• Exclusion restriction: Yi(0, t) = Yi(1, t)
• Continuity: E[Ti(z) | Xi = x ] and E[Yi(z , Ti(z)) | Xi = x ] are

continuous in x

• Recall that the identification formula of IV is given by

Instrument Effect on Outcome (Z’s effect on Y)
Instrument Effect on Treatment (Z’s effect on T)

• As Instrument’s local effect is estimated by RDD, we use

limx↓c E[Yi | Xi = x ] − limx↑c E[Yi | Xi = x ]
limx↓c E[Ti | Xi = x ] − limx↑c E[Ti | Xi = x ]
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