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Logistics

• Midterm grade is released
• Really hard midterm
• Great job everyone

• We return bluebook
• Let us know if you have any regrading request

• Today’s agenda
• Review of Midterm Questions
• Module 7: Sensitivity Analysis
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Two Stage Randomized Experiment: Setup

• First Stage Randomization: randomizing treated cluster and
control cluster

• Wj : cluster treatment status for cluster j
• Second Stage Randomization: randomize treatment for

individual within treated cluster
• Zij = 1: if individual i is in the treated group
• Zij = 0: if individual i is in the control group

• Partial Interference Assumption: No interference between
clusters

• Stratified Interference Assumption: Individual outcome is
affected by (1) their own treatment status and (2) the proportion
of the treated units within the same cluster

• This implies that Yij = Yij(Zij ,Wj)
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Two Stage Randomized Experiment: Estimand
• Total Effect: Effect of Treatment + Spillover

τ = 1
n

J∑
j=1

n∑
i=1

[Yij(1, 1) − Yij(0, 0)]

• Direct Effect: Effect of Treatment

δ = 1
n

J∑
j=1

n∑
i=1

[Yij(1, 1) − Yij(0, 1)]

• Indirect Effect: Spillover Effect

ξ = 1
n

J∑
j=1

n∑
i=1

[Yij(0, 1) − Yij(0, 0)]
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Two Stage Randomized Experiment: Question 1(c)
• The within-sample variance is given by

V(ξ̂ | On) = σ2
b(0, 1)

J1
+ σ2

b(0, 0)
J0

−
σ2

ξ

J

+ 1
m01JJ1

(
1 − m01

m

) J∑
j=1

σ2
j (0, 1)

J1

where

σ2
j (z ,w) := 1

m − 1

m∑
i=1

(Yij(z ,w) − Y j(z ,w))2

σ2
b(z ,w) := 1

J − 1

J∑
j=1

(Y j(z ,w) − Y (z ,w))2

σ2
ξ := 1

J − 1

J∑
j=1

{(Y j(0, 1) − Y j(0, 0)) − (Y (0, 1) − Y (0, 0))}2.
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Two Stage Randomized Experiment: Question 1(c)
• Look at the last term

σ2
ξ := 1

J − 1

J∑
j=1

{(Y j(0, 1) − Y j(0, 0)) − (Y (0, 1) − Y (0, 0))}2

• This is the sample variance of spillover effect at the cluster level
Y j(0, 1) − Y j(0, 0)

• Now, notice that

σ2
ξ = var(Y j(0, 1) − Y j(0, 0))

= var(Y j(0, 1)) + var(Y j(0, 0)) − 2 cov(Y j(0, 1),Y j(0, 0))︸ ︷︷ ︸
Not Identified!
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Two Stage Randomized Experiment: Question 1(d)
• Recall that we have law of total variance

V[ξ̂] = E[V(ξ̂ | On)] + V[E(ξ̂ | On)]

• We proved that E(ξ̂ | On) is unbiased; thus

V[E(ξ̂ | On)]

= V
[ 1

J

J∑
j=1

( 1
m

m∑
i=1

Yij(0, 1) − 1
m

m∑
i=1

Yij(0, 0)
)

︸ ︷︷ ︸
Indirect Effect in Cluster j

]

= V[Yj(0, 1) − Yj(0, 0)]
J .

• Thus, this part is the variance of indirect effect
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Two Stage Randomized Experiment: Question 1(d)

• On the other hand, we already know the form of V(ξ̂ | On)

• NOTE: each σ is not random in finite-population framework, but
it is random in super-population framework!

• Therefore, σ should not remain in the last formula
• You need to take the expectation
• Fortunately, each σ is unbiased → We can replace it with

population variance
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Two Stage Randomized Experiment with
Encouragement: Assumption

• First Stage Randomization: randomizing treated cluster and
control cluster

• Wj : cluster treatment status for cluster j
• Second Stage Randomization: randomize encouragement for

individual within treated cluster
• Zij = 1: if individual i receives encouragement
• Zij = 0: if individual i does not receive encouragement

• Assumptions
• Partial Interference Assumption: No interference between clusters
• Monotonicity: Tij(zij = 1, z−i,j) ≥ Tij(zij = 0, z−i,j)
• Exclusion Restriction: Yij(z j , t j) = Yij(z ′

j , t j) = Yij(t j)

• We relaxed the stratified interference assumption
• Thus, Yij = Yij(Zij ,Z−ij)
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Two Stage Randomized Experiment with
Encouragement

• In question 2(c) and 2(e), we make different assumptions:
• 2(c): No spillover of treatment receipt on the outcome

Yij(tij , t−i,j) = Yij(tij , t ′
−i,j) for all i , j , tij , t−i,j , t ′

−i,j .

• 2(d): No spillover effect of encouragement on the treatment receipt

Tij(zij , z−i,j) = Tij(zij , z ′
−i,j) for all i , j , zij , z−i,j , z ′

−i,j
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Two Stage Randomized Experiment with
Encouragement

• Numerator is
J∑

j=1

m∑
i=1

∑
z−i,j

{Yij(1, z−i ,j) − Yij(0, z−i ,j)}

× {Tij(1, z−i ,j) − Tij(0, z−i ,j)}︸ ︷︷ ︸
Only takes 1 for Complier

Pr(Z−i ,j = z−i ,j | Wj = 1)︸ ︷︷ ︸
Marginalize over Other’s Encouragement

• Important: You need to understand when potential outcome is
random / not random in finite sample framework

• Recall that Z ij (encouragement status) is random
• Treatment is random variable since Tij = Tij(Z ij) (similarly

Yij = Yij(Z ij))

• Therefore, even after using consistency

ZijYij = ZijYij(Zij = 1,Z−ij )

the potential outcome Yij(Zij = 1,Z−ij ) is still random!
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Two Stage Randomized Experiment with
Encouragement

• Therefore, you cannot do the following!

1
J

J∑
j=1

1
m1

m∑
i=1

E[ZijYij ]

= 1
J

J∑
j=1

1
m1

m∑
i=1

E[ZijYij(Zij = 1,Z−ij )]

̸= 1
J

J∑
j=1

1
m1

m∑
i=1

Yij(Zij = 1,Z−ij )E[Zij ]

because Yij(Zij = 1,Z−ij ) is random due to Z−ij
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Two Stage Randomized Experiment with
Encouragement

• Instead, you need to justify as follows!

1
J

J∑
j=1

1
m1

m∑
i=1

E[ZijYij ]

= 1
J

J∑
j=1

1
m1

m∑
i=1

E[ZijYij(Zij = 1,Z−ij )]

= 1
J

J∑
j=1

1
m1

m∑
i=1

E
[
E

(
ZijYij(Zij = 1,Z−ij ) | Z−ij

)]

= 1
J

J∑
j=1

1
m1

m∑
i=1

E
[
Yij(Zij = 1,Z−ij )E

(
Zij | Z−ij

)]

= 1
J

1
m

J∑
j=1

m∑
i=1

E
[
Yij(Zij = 1,Z−ij )

]
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Sensitivity Analysis

• Sensitivity Analysis: Approach to characterize the robustness of
your finding

• Two approaches
• Approach 1: Partial R2 Approach / Omitted Variable Bias

Approach
• Reading: Cinelli and Hazlett (2020, JRSS-B)

• Approach 2: Cornfield Condition (Risk Ratio based approach)
• Reading: Ding and Vanderwheele (2016, Epidemiology)

• Other approaches: Rosenbaum’s Γ
• Covered in Module 8 (Assuming odds of treatment)
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Omitted Variable Bias Formula (1)

• Suppose that true model is

Yi = α+ βTi + γ⊤X i + δUi + ϵi

but you use the model

Yi = α∗ + β∗Ti + γ∗⊤X i + ϵi

• Recall that FWL theorem tells us

β∗ = Cov(Yi , T̃ ∗
i )

V[T̃ ∗
i ]

where
Ti = ϕ∗

0 + ϕ∗⊤
1 X i + T̃ ∗

i
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Omitted Variable Bias Formula (2)
• Then,

β∗ = Cov(Yi , T̃ ∗
i )

V[T̃ ∗
i ]

= Cov(α+ βTi + γ⊤X i + δUi + ϵi , T̃ ∗
i )

V[T̃ ∗
i ]

= Cov(βTi + δUi , T̃ ∗
i )

V[T̃ ∗
i ]

= β + δ × Cov(Ui , T̃ ∗
i )

V[T̃ ∗
i ]

where the last line is because

Cov(Ti , T̃ ∗
i ) = Cov(ϕ∗

0 + ϕ∗⊤
1 X i + T̃ ∗

i , T̃ ∗
i ) = V[T̃ ∗

i ]

• Also, consider Ui = ψ∗
0 +ψ⊤

1 X i + Ũi . Then,

Cov(Ui , T̃ ∗
i ) = Cov(ψ∗

0 +ψ⊤
1 X i + Ũi , T̃ ∗

i ) = Cov(Ũi , T̃ ∗
i )
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Omitted Variable Bias Formula (3)
• Therefore, the bias term is

|β∗ − β| = |Cov(Y ⊥T ,X
i ,U⊥T ,X

i )|
V[U⊥T ,X

i ]︸ ︷︷ ︸
=δ (By FWL)

×|Cov(U⊥X
i ,T ⊥X

i )|
V[T ⊥X

i ]

• Now, notice that

|Cov(Y ⊥T ,X
i ,U⊥T ,X

i )|
V[U⊥T ,X

i ]
= |Cov(Y ⊥T ,X

i ,U⊥T ,X
i )|√

V[U⊥T ,X
i ]

√
V[Y ⊥T ,X

i ]︸ ︷︷ ︸
Partial R2 of Y ∼U|T ,X

×

√
V[Y ⊥T ,X

i ]√
V[U⊥T ,X

i ]

and

|Cov(U⊥X
i ,T ⊥X

i )|
V[T ⊥X

i ]
= |Cov(U⊥X

i ,T ⊥X
i )|√

V[T ⊥X
i ]

√
V[U⊥X

i ]︸ ︷︷ ︸
Partial R2 of T∼U|X

×

√
V[T ⊥X

i ]√
V[U⊥X

i ]
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Partial R-Squared Approach
• As a result,

|β∗ − β| =

√√√√R2
Y ∼U|T ,X

V[Y ⊥T ,X
i ]

V[U⊥T ,X
i ]

× R2
T∼U|X

V[U⊥X
i ]

V[T ⊥X
i ]

• Therefore, with a bit of additional step1, we get

|β∗ − β| =

√√√√√√R2
Y ∼U|T ,X ×

R2
T∼U|X

1 − R2
T∼U|X

× V[Y ⊥T ,X
i ]

V[Y ⊥T
i ]︸ ︷︷ ︸

Estimatable

1With FWL theorem, we can indeed derive

V[U⊥X
i ]

V[U⊥T ,X
i ]

= 1
V[U⊥T,X

i ]
V[U⊥X

i ]

= 1
1 − R2

T∼U|X

See Review Question 7 for STAT.
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Appendix: Unconditional R2

• Recall that R2 for regression Y ∼ X is given by

R2
Y ∼X = V[Ŷi ]

V[Yi ]
= 1 − V[ϵ̂]

V[Yi ]
= 1 − V[Y ⊥X

i ]
V[Yi ]

• Now, notice that since residual ϵ̂i is orthogonal to Ŷi , we get

Cov(Yi , Ŷi) = Cov(Ŷi + ϵ̂i , Ŷi) = Cov(Ŷi , Ŷi) = V[Ŷi ]

• As a result, we can show the connection between unconditional R2

and correlation coefficient:

Cor(Yi , Ŷi) = Cov(Yi , Ŷi)√
V[Yi ]

√
V[Ŷi ]

=

√
V[Ŷi ]
V[Yi ]

=
√

R2
Y ∼X
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Cornfield Condition (Risk Ratio based approach)

• Setup: Yi(t) ⊥⊥ Ti | Ui for t ∈ {0, 1}
• However, Ui is unobserved

• Estimand: Now, let’s focus on the causal risk ratio:

RRtrue
TY = P(Yi(1) = 1)

P(Yi(0) = 1)

• Risk ratio = 1 is equivalent to ATE = 0

• We instead observe the observed risk ratio

RRobs
TY = P(Yi = 1 | Ti = 1)

P(Yi = 1 | Ti = 0)
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Cornfield Condition (Risk Ratio based approach)

• Generalized Cornfield Condition: If RRobs
TY > 1, then

RRtrue
TY ≥ RRobs

TY × RRTU + RRUY − 1
RRTU × RRUY

where

RRTU = P(Ui = 1 | Ti = 1)
P(Ui = 1 | Ti = 0) , RRUY = P(Yi = 1 | Ui = 1)

P(Yi = 1 | Ui = 0)

Further, in order for RRtrue
TY = 1, we must have

max{RRUY ,RRTU}︸ ︷︷ ︸
Unobserved

≥ RRobs
TY +

√
RRobs

TY (RRobs
TY − 1)︸ ︷︷ ︸

Observed
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Cornfield Condition (Risk Ratio based approach)
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