

Section: Module 5

Instrumental Variable

Kentaro Nakamura

GOV 2002

October 10th, 2025

Agenda

- Review of Instrumental Variable
- Estimating Complier for multi-valued treatment
 - Point Estimate / Standard Error (Question 3)
- Weak Instrument

Review of Instrumental Variable

- Setup
 - Z_i : Instrument / Encouragement (randomized)
 - T_i : Treatment (not randomized!)
 - Y_i : Outcome
- Assumptions
 - Randomization of instrument
 - Exclusion restriction (Z_i influences outcome only through T_i)
 - Monotonicity (there is no defiers)
- Check review section's slide for identification

Complier Type (Binary Treatment)

- When treatment is binary, we have four types
 - Compliers: $T_i(Z_i = 1) = 1$ and $T_i(Z_i = 0) = 0$
 - Always-takers: $T_i(Z_i = 1) = T_i(Z_i = 0) = 1$
 - Never-takers: $T_i(Z_i = 1) = T_i(Z_i = 0) = 0$
 - Defiers: $T_i(Z_i = 1) = 0$ and $T_i(Z_i = 0) = 1$

	$Z_i = 1$	$Z_i = 0$
$T_i = 1$	Complier / Always-taker	Defier / Always-taker
$T_i = 0$	Defier / Never-taker	Complier / Never-taker

- We exclude defier by monotonicity
 - As a result, we can identify each principal strata

Estimating Complier for multi-valued treatment (1)

- What if we have multi-valued treatment
 - This is the setting of Question 3
- Consider the case where treatment is three category
 - I.e., $T_i \in \{0, 1, 2\}$
 - We keep instrument binary: $Z_i \in \{0, 1\}$
- How many principal strata do we have?

Estimating Complier for multi-valued treatment (2)

- We have 9 principal strata
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 2\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 2\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 2\}$
- We need to remove some of principal strata to identify the probability

Estimating Complier for multi-valued treatment (2)

- Monotonicity \rightarrow we can remove strata $T_i(Z_i = 0) > T_i(Z_i = 1)$
- We have 6 principal strata (remove 3 strata)
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 2\}$
 - $\{\cancel{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 0}\}$
 - $\{\cancel{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 1}\}$
 - $\{\cancel{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 2}\}$
 - $\{\cancel{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 0}\}$
 - $\{\cancel{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 1}\}$
 - $\{\cancel{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 2}\}$

Estimating Complier for multi-valued treatment (3)

- Another Example: $T_i(1) - T_i(0) \in \{-1, 0\}$
 - i.e., difference is at most one
- We have 5 principal strata (remove 4 strata)
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 0, T_i(Z_i = 1) = 2\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 1, T_i(Z_i = 1) = 2\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 0\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 1\}$
 - $\{T_i(Z_i = 0) = 2, T_i(Z_i = 1) = 2\}$

Estimating Complier for multi-valued treatment (4)

- Can we estimate the proportion of each strata with standard errors?
- Because Z_i is randomized, for $k \in \{0, 1, 2\}$

$$\mathbb{P}(T_i(1) = k) = \mathbb{P}(T_i(1) = k \mid Z_i = 1) = \mathbb{P}(T_i = k \mid Z_i = 1)$$

$$\mathbb{P}(T_i(0) = k) = \mathbb{P}(T_i(0) = k \mid Z_i = 0) = \mathbb{P}(T_i = k \mid Z_i = 0)$$

- Moreover, because sum of probability is 1,

$$\mathbb{P}(T_i(1) = 2 \mid T_i(0) = 2) + \mathbb{P}(T_i(1) = 1 \mid T_i(0) = 2) = 1$$

$$\mathbb{P}(T_i(1) = 1 \mid T_i(0) = 1) + \mathbb{P}(T_i(1) = 0 \mid T_i(0) = 1) = 1$$

$$\mathbb{P}(T_i(1) = 0 \mid T_i(0) = 0) = 1$$

Estimating Complier for multi-valued treatment (5)

- Now, notice that by the definition of conditional probability,

$$1 = \mathbb{P}(T_i(1) = 0 \mid T_i(0) = 0) = \frac{\mathbb{P}(T_i(1) = 0, T_i(0) = 0)}{\mathbb{P}(T_i(0) = 0)}$$

- This means that

$$\mathbb{P}(T_i(0) = 0) = \mathbb{P}(T_i(1) = 0, T_i(0) = 0)$$

- Hence,

$$\mathbb{P}(T = 0 \mid Z = 0) = \mathbb{P}(T_i(1) = 0, T_i(0) = 0)$$

Estimating Complier for multi-valued treatment (6)

- Now, notice that

$$\mathbb{P}(T_i(1) = 0) = \mathbb{P}(T_i(0) = 1, T_i(1) = 0) + \mathbb{P}(T_i(0) = 0, T_i(1) = 0)$$

- We know $\mathbb{P}(T_i(1) = 0) = \mathbb{P}(T_i = 0 \mid Z_i = 1)$
- We also identify $\mathbb{P}(T_i(0) = 0, T_i(1) = 0) = \mathbb{P}(T = 0 \mid Z = 0)$ from previous step
- Therefore,

$$\mathbb{P}(T_i(0) = 1, T_i(1) = 0) = \mathbb{P}(T_i = 0 \mid Z_i = 1) - \mathbb{P}(T_i = 0 \mid Z_i = 0)$$

Estimating Complier for multi-valued treatment (7)

- What about $\mathbb{P}(T_i(0) = 1, T_i(1) = 1)$?

$$\mathbb{P}(T_i(0) = 1, T_i(1) = 1) = \mathbb{P}(T_i(0) = 1) - \mathbb{P}(T_i(0) = 1, T_i(1) = 0)$$

- As we identify $\mathbb{P}(T_i(0) = 1, T_i(1) = 0)$ already,

$$\begin{aligned}\mathbb{P}(T_i(0) = 1, T_i(1) = 1) \\ = \mathbb{P}(T_i = 1 \mid Z_i = 0) - (\mathbb{P}(T_i = 0 \mid Z_i = 1) - \mathbb{P}(T_i = 0 \mid Z_i = 0))\end{aligned}$$

- We simply repeat the same thing to identify all the strata

Estimating Complier for multi-valued treatment (8)

- Can you estimate the standard error?

$$\mathbb{P}(\widehat{T_i(0)} = 1, \widehat{T_i(1)} = 0) = \mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 1) - \mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 0)$$

- Recall that $\mathbb{V}[X - Y] = \mathbb{V}[X] + \mathbb{V}[Y] - 2\text{Cov}(X, Y)$
- Hence,

$$\begin{aligned} & \mathbb{V}(\mathbb{P}(\widehat{T_i(0)} = 1, \widehat{T_i(1)} = 0)) \\ &= \mathbb{V}(\mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 1) - \mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 0)) \\ &= \mathbb{V}(\mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 1)) + \mathbb{V}(\mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 0)) \\ &\quad - 2 \underbrace{\text{Cov}(\mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 1), \mathbb{P}(\widehat{T_i = 0} \mid \widehat{Z_i} = 0))}_{=0(\because \text{Independence})} \end{aligned}$$

Estimating Complier for multi-valued treatment (9)

- What about $\mathbb{P}(\widehat{T}_i(0) = 1, \widehat{T}_i(1) = 1)$?

$$\begin{aligned}\mathbb{P}(\widehat{T}_i(0) = 1, \widehat{T}_i(1) = 1) \\ = \mathbb{P}(\widehat{T}_i = 1 \mid \widehat{Z}_i = 0) - (\mathbb{P}(\widehat{T}_i = 0 \mid \widehat{Z}_i = 1) - \mathbb{P}(\widehat{T}_i = 0 \mid \widehat{Z}_i = 0))\end{aligned}$$

- Hence,

$$\begin{aligned}\mathbb{V}\left(\mathbb{P}(\widehat{T}_i(0) = 1, \widehat{T}_i(1) = 1)\right) \\ = \mathbb{V}\left(\mathbb{P}(\widehat{T}_i = 1 \mid \widehat{Z}_i = 0) - (\mathbb{P}(\widehat{T}_i = 0 \mid \widehat{Z}_i = 1) - \mathbb{P}(\widehat{T}_i = 0 \mid \widehat{Z}_i = 0))\right)\end{aligned}$$

- **Caution:** Notice that $\mathbb{P}(\widehat{T}_i = 1 \mid \widehat{Z}_i = 0)$ and $\mathbb{P}(\widehat{T}_i = 0 \mid \widehat{Z}_i = 0)$ are not independent!
 - They are on the same sample ($Z_i = 0$)
 - Thus, you need to take into account **covariance**

Estimating Complier for multi-valued treatment (9)

$$\begin{aligned} & \mathbb{V} \left(\mathbb{P}(T_i = \widehat{1} \mid Z_i = 0) - (\mathbb{P}(T_i = \widehat{0} \mid Z_i = 1) - \mathbb{P}(T_i = \widehat{0} \mid Z_i = 0)) \right) \\ &= \mathbb{V}(\mathbb{P}(T_i = \widehat{1} \mid Z_i = 0)) \\ & \quad + \mathbb{V}(\mathbb{P}(T_i = \widehat{0} \mid Z_i = 1)) \\ & \quad + \mathbb{V}(\mathbb{P}(T_i = \widehat{0} \mid Z_i = 0))) \\ & \quad - 2 \underbrace{\text{Cov}(\mathbb{P}(T_i = \widehat{1} \mid Z_i = 0), \mathbb{P}(T_i = \widehat{0} \mid Z_i = 1))}_{=0} \\ & \quad + 2 \underbrace{\text{Cov}(\mathbb{P}(T_i = \widehat{1} \mid Z_i = 0), \mathbb{P}(T_i = \widehat{0} \mid Z_i = 0))}_{\text{Non-Zero!}} \\ & \quad - 2 \underbrace{\text{Cov}(\mathbb{P}(T_i = \widehat{0} \mid Z_i = 1), \mathbb{P}(T_i = \widehat{0} \mid Z_i = 0))}_{=0} \end{aligned}$$

Estimating Complier for multi-valued treatment (10)

- How can we calculate covariance term?

$$\text{Cov}(\widehat{\mathbb{P}(T_i = 1 | Z_i = 0)}, \widehat{\mathbb{P}(T_i = 0 | Z_i = 0)})$$

- Why is it non-zero? \rightarrow If $\widehat{\mathbb{P}(T_i = 1 | Z_i = 0)}$ becomes larger, $\widehat{\mathbb{P}(T_i = 0 | Z_i = 0)}$ should be smaller
- From theory of multinomial distribution:

$$\begin{aligned} & \text{Cov}(\widehat{\mathbb{P}(T_i = 1 | Z_i = 0)}, \widehat{\mathbb{P}(T_i = 0 | Z_i = 0)}) \\ &= -\frac{\mathbb{P}(T_i = 1 | Z_i = 0)\mathbb{P}(T_i = 0 | Z_i = 0)}{\text{Number of } Z_i = 0} \end{aligned}$$

- Same for other covariance terms

Added: What is multinomial distribution?

- Suppose there are K categories
- Think about how many times the trial where each T_i falls into one of K categories with probability

$$\mathbb{P}(T_i = k) = p_k \quad \text{with} \quad \sum_{k=1}^K p_k = 1$$

- We care about the counts of each category: i.e.,
 $X_k = \sum_{i=1}^n \mathbb{1}\{T_i = k\}$
- The joint distribution of counts (X_1, \dots, X_K) follows multinomial distribution with $\sum_{k=1}^K X_k = n$
 - $\mathbb{E}[X_k] = np_k$
 - $\mathbb{V}[X_k] = np_k(1 - p_k)$
 - $\text{Cov}(X_k, X_l) = -np_k p_l$
- As a result, the covariance of each probability estimates is

$$\text{Cov}(\hat{p}_k, \hat{p}_l) = \text{Cov}\left(\frac{X_k}{n}, \frac{X_l}{n}\right) = \frac{1}{n^2} \text{Cov}(X_k, X_l) = -\frac{p_k p_l}{n}$$

Two Stage Least Squares

- Consider the following models:

$$Y_i = \alpha + \beta T_i + \epsilon_i$$

$$T_i = \gamma Z_i + \eta_i$$

where $\mathbb{E}[\epsilon_i | Z_i] = \mathbb{E}[\eta_i | Z_i] = 0$

- Wald Estimator:**

$$\hat{\beta}_{\text{IV}} := \frac{\widehat{\text{Cov}}(Y_i, Z_i)}{\widehat{\text{Cov}}(T_i, Z_i)} = \frac{\text{Effect of Z on Y}}{\text{Effect of Z on T}}$$

Two Stage Least Squares: Why it works?

$$\begin{aligned}\beta_{\text{IV}} &= \frac{\text{Cov}(Y_i, Z_i)}{\text{Cov}(T_i, Z_i)} \\ &= \frac{\text{Cov}(\alpha + \beta T_i + \epsilon, Z_i)}{\text{Cov}(\gamma Z_i + \eta_i, Z_i)} \\ &= \frac{\text{Cov}(\beta T_i, Z_i)}{\text{Cov}(\gamma Z_i, Z_i)} \quad (\because \text{Exogeneity}) \\ &= \frac{\text{Cov}(\beta(\gamma Z_i + \eta_i), Z_i)}{\text{Cov}(\gamma Z_i, Z_i)} \\ &= \frac{\beta \gamma \mathbb{V}[Z_i]}{\gamma \mathbb{V}[Z_i]} = \beta\end{aligned}$$

Weak Instrument (1)

- IV is unstable when instrument weakly affects treatment $\gamma \approx 0$
 - Let's see how bias appears
 - For the sake of simplicity, assume $\bar{Z} = 0$
- Then, Wald estimator is written as

$$\hat{\beta}_{\text{IV}} := \frac{\widehat{\text{Cov}}(Y_i, Z_i)}{\widehat{\text{Cov}}(T_i, Z_i)} = \frac{\frac{1}{n} \sum_{i=1}^n Y_i Z_i}{\frac{1}{n} \sum_{i=1}^n T_i Z_i}$$

Weak Instrument (2)

$$\begin{aligned}\hat{\beta}_{\text{IV}} - \beta &= \frac{\frac{1}{n} \sum_{i=1}^n Y_i Z_i}{\frac{1}{n} \sum_{i=1}^n T_i Z_i} - \beta \\ &= \frac{\frac{1}{n} \sum_{i=1}^n (\alpha + \beta T_i + \epsilon_i) Z_i}{\frac{1}{n} \sum_{i=1}^n T_i Z_i} - \beta \\ &= \frac{\frac{1}{n} \sum_{i=1}^n (\beta T_i Z_i + \epsilon_i Z_i)}{\frac{1}{n} \sum_{i=1}^n T_i Z_i} - \beta \\ &= \beta + \frac{\frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i}{\frac{1}{n} \sum_{i=1}^n T_i Z_i} - \beta = \frac{\frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i}{\frac{1}{n} \sum_{i=1}^n T_i Z_i}\end{aligned}$$

- If $\gamma = 0$, then $T_i = \gamma Z_i + \eta_i = \eta_i$. So,

$$\hat{\beta}_{\text{IV}} - \beta = \frac{\frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i}{\frac{1}{n} \sum_{i=1}^n \eta_i Z_i}$$