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Agenda

• Review of Instrumental Variable

• Estimating Complier for multi-valued treatment
• Point Estimate / Standard Error (Question 3)

• Weak Instrument
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Review of Instrumental Variable

• Setup
• Zi : Instrument / Encouragement (randomized)
• Ti : Treatment (not randomized!)
• Yi : Outcome

• Assumptions
• Randomization of instrument
• Exclusion restriction (Zi influences outcome only through Ti)
• Monotonicity (there is no defiers)

• Check review section’s slide for identification
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Complier Type (Binary Treatment)

• When treatment is binary, we have four types
• Compliers: Ti(Zi = 1) = 1 and Ti(Zi = 0) = 0
• Always-takers: Ti(Zi = 1) = Ti(Zi = 0) = 1
• Never-takers: Ti(Zi = 1) = Ti(Zi = 0) = 0
• Defiers: Ti(Zi = 1) = 0 and Ti(Zi = 0) = 1

Zi = 1 Zi = 0
Ti = 1 Complier / Always-taker Defier / Always-taker
Ti = 0 Defier / Never-taker Complier / Never-taker

• We exclude defier by monotonicity
• As a result, we can identify each principal strata
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Estimating Complier for multi-valued treatment (1)

• What if we have multi-valued treatment
• This is the setting of Question 3

• Consider the case where treatment is three category
• I.e., Ti ∈ {0, 1, 2}
• We keep instrument binary: Zi ∈ {0, 1}

• How many principal strata do we have?
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Estimating Complier for multi-valued treatment (2)

• We have 9 principal strata
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 2}

• We need to remove some of principal strata to identify the
probability
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Estimating Complier for multi-valued treatment (2)

• Monotonicity → we can remove strata Ti(Zi = 0) > Ti(Zi = 1)

• We have 6 principal strata (remove 3 strata)
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 2}
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Estimating Complier for multi-valued treatment (3)

• Another Example: Ti(1) − Ti(0) ∈ {−1, 0}
• i.e., difference is at most one

• We have 5 principal strata (remove 4 strata)
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 0, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 1, Ti(Zi = 1) = 2}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 0}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 1}
• {Ti(Zi = 0) = 2, Ti(Zi = 1) = 2}

8



Estimating Complier for multi-valued treatment (4)

• Can we estimate the proportion of each strata with standard errors?
• Because Zi is randomized, for k ∈ {0, 1, 2}

P(Ti(1) = k) = P(Ti(1) = k | Zi = 1) = P(Ti = k | Zi = 1)
P(Ti(0) = k) = P(Ti(0) = k | Zi = 0) = P(Ti = k | Zi = 0)

• Moreover, because sum of probability is 1,

P(Ti(1) = 2 | Ti(0) = 2) + P(Ti(1) = 1 | Ti(0) = 2) = 1
P(Ti(1) = 1 | Ti(0) = 1) + P(Ti(1) = 0 | Ti(0) = 1) = 1

P(Ti(1) = 0 | Ti(0) = 0) = 1
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Estimating Complier for multi-valued treatment (5)
• Now, notice that by the definition of conditional probability,

1 = P(Ti(1) = 0 | Ti(0) = 0) = P(Ti(1) = 0, Ti(0) = 0)
P(Ti(0) = 0)

• This means that

P(Ti(0) = 0) = P(Ti(1) = 0, Ti(0) = 0)

• Hence,

P(T = 0 | Z = 0) = P(Ti(1) = 0, Ti(0) = 0)
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Estimating Complier for multi-valued treatment (6)

• Now, notice that

P(Ti(1) = 0) = P(Ti(0) = 1, Ti(1) = 0) + P(Ti(0) = 0, Ti(1) = 0)

• We know P(Ti(1) = 0) = P(Ti = 0 | Zi = 1)
• We also identify P(Ti(0) = 0, Ti(1) = 0) = P(T = 0 | Z = 0) from

previous step
• Therefore,

P(Ti(0) = 1, Ti(1) = 0) = P(Ti = 0 | Zi = 1) − P(Ti = 0 | Zi = 0)
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Estimating Complier for multi-valued treatment (7)

• What about P(Ti(0) = 1, Ti(1) = 1)?

P(Ti(0) = 1, Ti(1) = 1) = P(Ti(0) = 1) − P(Ti(0) = 1, Ti(1) = 0)

• As we identify P(Ti(0) = 1, Ti(1) = 0) already,

P(Ti(0) = 1, Ti(1) = 1)
= P(Ti = 1 | Zi = 0) −

(
P(Ti = 0 | Zi = 1) − P(Ti = 0 | Zi = 0)

)

• We simply repeat the same thing to identify all the strata
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Estimating Complier for multi-valued treatment (8)
• Can you estimate the standard error?

̂P(Ti(0) = 1, Ti(1) = 0) = ̂P(Ti = 0 | Zi = 1) − ̂P(Ti = 0 | Zi = 0)

• Recall that V[X − Y ] = V[X ] + V[Y ] − 2Cov(X , Y )
• Hence,

V
(

̂P(Ti(0) = 1, Ti(1) = 0)
)

= V
(

̂P(Ti = 0 | Zi = 1) − ̂P(Ti = 0 | Zi = 0)
)

= V
(

̂P(Ti = 0 | Zi = 1)
)

+ V
(

̂P(Ti = 0 | Zi = 0)
)

− 2 Cov
(

̂P(Ti = 0 | Zi = 1), ̂P(Ti = 0 | Zi = 0)
)

︸ ︷︷ ︸
=0(∵Independence)
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Estimating Complier for multi-valued treatment (9)
• What about P(Ti(0) = 1, Ti(1) = 1)?

̂P(Ti(0) = 1, Ti(1) = 1)

= ̂P(Ti = 1 | Zi = 0) −
( ̂P(Ti = 0 | Zi = 1) − ̂P(Ti = 0 | Zi = 0)

)
• Hence,

V
(

̂P(Ti(0) = 1, Ti(1) = 1)
)

= V
(

̂P(Ti = 1 | Zi = 0) −
( ̂P(Ti = 0 | Zi = 1) − ̂P(Ti = 0 | Zi = 0)

))

• Caution: Notice that ̂P(Ti = 1 | Zi = 0) and ̂P(Ti = 0 | Zi = 0)
are not independent!

• They are on the same sample (Zi = 0)
• Thus, you need to take into account covariance
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Estimating Complier for multi-valued treatment (9)

V
(

̂P(Ti = 1 | Zi = 0) −
( ̂P(Ti = 0 | Zi = 1) − ̂P(Ti = 0 | Zi = 0)

))

= V( ̂P(Ti = 1 | Zi = 0))

+ V( ̂P(Ti = 0 | Zi = 1))

+ V( ̂P(Ti = 0 | Zi = 0)
)
)

− 2 Cov( ̂P(Ti = 1 | Zi = 0), ̂P(Ti = 0 | Zi = 1))︸ ︷︷ ︸
=0

+ 2 Cov( ̂P(Ti = 1 | Zi = 0), ̂P(Ti = 0 | Zi = 0))︸ ︷︷ ︸
Non-Zero!

− 2 Cov( ̂P(Ti = 0 | Zi = 1), ̂P(Ti = 0 | Zi = 0))︸ ︷︷ ︸
=0
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Estimating Complier for multi-valued treatment (10)
• How can we calculate covariance term?

Cov( ̂P(Ti = 1 | Zi = 0), ̂P(Ti = 0 | Zi = 0))

• Why is it non-zero? → If ̂P(Ti = 1 | Zi = 0) becomes larger,
̂P(Ti = 0 | Zi = 0) should be smaller

• From theory of multinomial distribution:

Cov( ̂P(Ti = 1 | Zi = 0), ̂P(Ti = 0 | Zi = 0))

= −P(Ti = 1 | Zi = 0)P(Ti = 0 | Zi = 0)
Number of Zi = 0

• Same for other covariance terms
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Added: What is multinominal distribution?
• Suppose there are K categories
• Think about how many times the trial where each Ti falls into one

of K categories with probability

P(Ti = k) = pk with
K∑

k=1
pk = 1

• We care about the counts of each category: i.e.,
Xk =

∑n
i=1 ⊮{Ti = k}

• The joint distribution of counts (X1, · · · , XK ) follows multinominal
distribution with

∑K
k=1 Xk = n

• E[Xk ] = npk
• V[Xk ] = npk(1 − pk)
• Cov(Xk , Xl) = −npkpl

• As a result, the covariance of each probability estimates is

Cov(p̂k , p̂l) = Cov
(Xk

n ,
Xl
n

)
= 1

n2 Cov(Xk , Xl) = −pkpl
n 17



Two Stage Least Squares

• Consider the following models:

Yi = α + βTi + ϵi

Ti = γZi + ηi

where E[ϵi | Zi ] = E[ηi | Zi ] = 0

• Wald Estimator:

β̂IV :=
̂Cov(Yi , Zi)
̂Cov(Ti , Zi)

= Effect of Z on Y
Effect of Z on T
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Two Stage Least Squares: Why it works?

βIV = Cov(Yi , Zi)
Cov(Ti , Zi)

= Cov(α + βTi + ϵ, Zi)
Cov(γZi + ηi , Zi)

= Cov(βTi , Zi)
Cov(γZi , Zi)

(∵ Exogeneity)

= Cov(β(γZi + ηi), Zi)
Cov(γZi , Zi)

= βγV[Zi ]
γV[Zi ]

= β
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Weak Instrument (1)

• IV is unstable when instrument weakly affects treatment γ ≈ 0
• Let’s see how bias appears
• For the sake of simplicity, assume Z̄ = 0

• Then, Wald estimator is written as

β̂IV :=
̂Cov(Yi , Zi)
̂Cov(Ti , Zi)

=
1
n
∑n

i=1 YiZi
1
n
∑n

i=1 TiZi
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Weak Instrument (2)

β̂IV − β =
1
n
∑n

i=1 YiZi
1
n
∑n

i=1 TiZi
− β

=
1
n
∑n

i=1(α + βTi + ϵi)Zi
1
n
∑n

i=1 TiZi
− β

=
1
n
∑n

i=1(βTiZi + ϵiZi)
1
n
∑n

i=1 TiZi
− β

= β +
1
n
∑n

i=1 ϵiZi
1
n
∑n

i=1 TiZi
− β =

1
n
∑n

i=1 ϵiZi
1
n
∑n

i=1 TiZi

• If γ = 0, then Ti = γZi + ηi = ηi . So,

β̂IV − β =
1
n
∑n

i=1 ϵiZi
1
n
∑n

i=1 ηiZi
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