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Logistics

• Midterm: October 15th, 2 hours
• Review Section: October 8th
• Extra Office Hour: October 14th 1:30-3:00pm

• What you should do before midterm
• Solve review questions
• Solve practice midterm
• Check solutions of problem sets
• Understand details of class materials
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Today’s Agenda
• Review of Linear Regression

• Basic Properties
• Best linear approximation
• Ordinal Least Squares (OLS)
• Frisch-Waugh-Lowell (FWL) theorem
• Asymptotic Variance (Extra slides, optional)

• Regression and Causal Inference
• Case 1: No Control
• Case 2: With control (no interaction)
• Case 3: With control (with interaction)

• Recommended reading: Ch7 of Imbens and Rubin (2015)
• Case 4: Stratified Design

• Cluster Randomized Experiment
• Related to Problem Set 4
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Review: Linear Regression (1)

• Linear regression with K predictors is written as

Yi = β0 + β1X1i + · · · + βK XKi + ϵi , E[ϵi | X1i , · · · , XKi ] = 0︸ ︷︷ ︸
Strict Exogeneity

• Let Xi = [1, X1i , · · · , XKi ]⊤ and β = [β0, · · · , βK ]⊤. Then,

Yi = X⊤
i β + ϵ, E[ϵi | Xi ] = 0

• Equivalently,

E[Yi | Xi ] = X⊤
i β

• Regression is conditional expectation function of Yi given Xi
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Review: Linear Regression (2)

• Note that E[ϵi | Xi ] = 0 implies (i) E[ϵi ] = 0 and (ii) E[ϵiXi ] = 0
• E[ϵi ] = E[E[ϵi | Xi ]] = E[0] = 0
• E[ϵiXi ] = E[E[ϵiXi | Xi ]] = E[XiE[ϵi | Xi ]] = E[Xi · 0] = 0

• Thus, the error ϵi is uncorrelated with regressor Xi
• Cov(Xi , ϵi) = E[ϵiXi ] − E[ϵi ]E[Xi ] = 0
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Review: Projection Coefficient
• Consider minimizing the mean squared prediction error

S(β) = E[(Yi − X⊤
i β)2]

= E[Y 2
i ] − 2β⊤E[XiYi ] + β⊤E[XiX⊤

i ]β

• Taking the derivative, we get

∂S(β)
∂β

= −2E[XiYi ] + 2E[XiX⊤
i ]β

• This gives the projection coefficient β

β =
(
E[XiX⊤

i ]
)−1E[XiYi ]

• Check this by inserting Yi = X⊤
i β + ϵ.
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Why linear regression? Why projection?
• Linear regression is a best linear approximation of conditional

expectation function m(Xi) = E[Yi | Xi ]
• To see this, consider minimizing the mean squared loss between

m(Xi) and X⊤
i β

d(β) = E[(m(Xi) − X⊤
i β)2]

• Notice that this minimization problem is just replacing Yi with
m(Xi) from the previous one.

• Thus, the best linear approximation β̃ is given by

β̃ =
(
E[XiX⊤

i ]
)−1E[Xim(Xi)]

=
(
E[XiX⊤

i ]
)−1E[XiE[Yi | Xi ]]

=
(
E[XiX⊤

i ]
)−1E[E[XiYi | Xi ]]

=
(
E[XiX⊤

i ]
)−1E[XiYi ] = β

• Projection coefficient is equal to the best linear approximation of
m(Xi) = E[Yi | Xi ] 7



Review: Ordinary Least Squares (OLS)

• Let’s use matrix notation.

Y =

Y1
...

Yn

 , X =

1 X11 · · · XK1
...

... . . . ...
1 Xn1 · · · XKn

 , β =


β0
β1
...

βK


• OLS estimator is given by

β̂ = (X⊤X)−1X⊤Y =
(1

n

n∑
i=1

XiX⊤
i

)−1(1
n

n∑
i=1

XiYi

)

• This estimator is unbiased (Hint: show E[β̂ | X] = β)
• Once you show E[β̂ | X] = β, then use the law of iterated

expectation!
• Also, residual is orthogonal: X⊤ϵ̂ = X⊤(Y − Xβ̂) = 0

• Hint: Insert the definition of β̂ = (X⊤X)−1X⊤Y
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Frisch-Waugh-Lowell (FWL) theorem
• Consider multiple regressions with K regressors

Yi = β0 + β1X1i + · · · + βK XKi + ϵi , E[ϵi | X1i , · · · , XKi ] = 0

• Estimator for βk needs matrix → often hard to make a proof

• FWL theorem gives another formula for k-th coefficient

βk = Cov(Yi , X̃ki)
V[X̃ki ]

for k ∈ {1, · · · , K}

where X̃ik is the residual obtained by
Xki = γ0 +

∑
j ̸=k

γjXji + X̃ki
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Frisch-Waugh-Lowell (FWL) theorem: Proof

Cov(Yi , X̃ki)
V[X̃ki ]

= Cov(β0 + β1X1i + · · · + βK XKi + ϵi , X̃ki)
V[X̃ki ]

(∵ def of Yi)

= Cov(βkXki , X̃ki)
V[X̃ki ]

=
Cov(βk{γ0 +

∑
j ̸=k γjXji + X̃ki}, X̃ki)
V[X̃ki ]

(∵ def of Xki)

= Cov(βk X̃ki , X̃ki)
V[X̃ki ]

(∵ Cov(X̃ki , Xji) = 0 for j ̸= k)

= βk

where the second line is because

• Cov(X̃ki , Xji) = 0 for any j ̸= k
• Cov(Xli , ϵ) = 0 for all l ∈ {1, · · · , K} → Cov(X̃ki , ϵ) = 0
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Frisch-Waugh-Lowell (FWL) theorem: Remark

• Note that you can also residualize the outcome; i.e.,

βk = Cov(Ỹi , X̃ki)
V[X̃ki ]

for k ∈ {1, · · · , K}

where Ỹi is the residual obtained by

Yi = α0 +
∑
j ̸=k

αjXji + Ỹi

• FWL Theorem is a tool for you to make the proof of multiple
regressions without using matrix

• This can be a helpful tool for exam / problem set
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Extra slides: Tools for Asymptotic Variance

• Law of Large Numbers (LLN): If X1, · · · , Xn are i.i.d.,

X̄ = 1
n

n∑
i=1

Xi
p−→ E[Xi ]

• Central Limit Theorem (CLT): If X1, · · · , Xn are i.i.d.,
√

n(X̄ − E[Xi ])
d−→ N (0,V[Xi ])

• Slutsky’s Lemma1: If Xn
d−→ X for some random variable X and

Yn
p−→ c for some constant c,

XnYn
d−→ cX

1If you haven’t seen it, don’t worry. Not required for midterm.
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Extra slides: Asymptotic Variance (1)
• Goal: To understand where sandwich comes from.

• Don’t worry even if you can’t get all the details (it is optional)
• Recall that the estimator for β̂ is given by

β̂ = (X⊤X)−1X⊤Y =
(1

n

n∑
i=1

XiX⊤
i

)−1(1
n

n∑
i=1

XiYi

)

• Because Y = Xβ + ϵ,

β̂ = (X⊤X)−1X⊤(Xβ + ϵ) = β + (X⊤X)−1X⊤ϵ

Thus,

√
n(β̂ − β) =

√
n(X⊤X)−1X⊤ϵ =

(1
n

n∑
i=1

XiX⊤
i

)−1( 1√
n

n∑
i=1

Xiϵi

)
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Extra slides: Asymptotic Variance (2)
• Notice that by law of large numbers, the first term converges in

probability to

1
n

n∑
i=1

XiX⊤
i

p−→ E[X⊤X]

• On the other hand, because each Xiϵi are i.i.d., by central limit
theorem, the second term converges in distribution to

1√
n

n∑
i=1

Xiϵi =
√

n 1
n

n∑
i=1

Xiϵi︸ ︷︷ ︸
Form of Avg!

d−→ N (0,E[(X⊤ϵ(X⊤ϵ)⊤)])

• Note that mean of normal distribution here is 0 because
E[Xiϵi ] = 0
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Extra slides: Asymptotic Variance (3)
• Therefore,

√
n(β̂ − β) =

√
n(X⊤X)−1X⊤ϵ

→ N
(

0,E[X⊤X]−1E[X⊤ϵϵ⊤X]E[X⊤X]−1︸ ︷︷ ︸
Asymptotic Variance

)

• Homoskedasticity: V[ϵi | Xi ] = σ2

• This gives V[ϵi | Xi ] = E[ϵ2
i | Xi ] − E[ϵi | Xi ]2︸ ︷︷ ︸

=0

= E[ϵ2
i | Xi ]

E[Xϵϵ⊤X⊤] = E[E[Xϵϵ⊤X⊤ | X]] (∵ Law of Iterated Expectation)
= E[XE[ϵϵ⊤ | X]︸ ︷︷ ︸

=σ2In

X⊤] = σ2E[X⊤X]

and thus the asymptotic variance is simplified to

E[X⊤X]−1E[X⊤ϵϵ⊤X]E[X⊤X]−1 = σ2E[X⊤X]−1

• Homoskedasticity is usually not plausible 15



Extra slides: Eicker-Huber-White (EHW) robust
variance estimator (HC0)

• Eicker-Huber-White (EHW) robust variance estimator (or
HC0)

(X⊤X)−1︸ ︷︷ ︸
Bread

X⊤ diag(ϵ̂2
i ) X︸ ︷︷ ︸

Meat

(X⊤X)−1︸ ︷︷ ︸
Bread

• Asymptotically consistent
• i.e., as N increases, it approaches to the true value

• But this has some bias in finite sample
• We will see it with simulation (two slides later)
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Extra slides: HC2 variance estimator
• HC2 heteroskedasticity-robust variance estimator

• Make finite sample bias smaller

(X⊤X)−1︸ ︷︷ ︸
Bread

X⊤ diag
(

ϵ̂2
i

1 − pii

)
X︸ ︷︷ ︸

Meat

(X⊤X)−1︸ ︷︷ ︸
Bread

where pii = Xi(X⊤X)−1Xi

• When Xi = [1, Ti ]⊤ (i.e., no control),

pii =
[

1
Ti

] ([ ∑n
i=1 1

∑n
i=1 Ti∑n

i=1 Ti
∑n

i=1 T 2
i

])−1 [
1
Ti

]

= 1
n1n0

(
n1(1 − Ti) + n0Ti

)
=

{
1/n1 (if Ti = 1)
1/n0 (if Ti = 0)

• Takeaway: HC2 becomes Neyman Variance with no control
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Extra slides: Many Robust Standard Errors
• Which robust SEs should we use in practice?

• Do not use homoskedastic one unless you check it
• When sample size is large, all robust SEs are consistent
• For small sample, use degrees of freedom adjustment from Bell and

McCaffrey (2002)
• Simulation results (from ECON2110 Lecture 12 Slide)

• Homoskedasticity → Does not have a proper coverage (95%)
• HC1 / HC2 → proper coverage for large sample, but some

finite-sample bias

N = 1000 N = 100 N = 50 N = 20

Homoskedasticity 91.72% 90.77% 90.07% 88.75%
HC1 95.42% 93.68% 92.17% 88.62%
HC2 95.45% 93.97% 92.81% 90.38%
HC2 w/ dof adjust 95.51% 94.8% 94.58% 96.38%
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Regression and Causal Inference: No Control
• Consider the simple linear regression

Yi = α + βTi + ϵi equivalently E[Yi | Ti = t] = α + βt

• Under complete randomization and consistency,

E[Yi | Ti = t] = E[Yi(t) | Ti = t] = E[Yi(t)]

• The regression above is written as

E[Yi(t)] = α + βt

• Thus

α = E[Yi(0)], β = E[Yi(1)]−E[Yi(0)] (= Average Treatment Effect)

• Takeaway: Regression estimates ATE (same as diff-in-means)
• Linearity does not matter
• HC2 variance is numerical identical to Neyman’s variance
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No Interaction model: Consistency (1)

• After randomization, there might be imbalance in covariates
• In this case, covariate adjustment helps improving efficiency

• Consider the multiple regression with demeaned pre-treatment
covariates

Yi = α + βTi + γ⊤X̃i + ϵi

• OLS estimator minimizes the mean squared error

n∑
i=1

{Yi − α − βTi − γ⊤X̃i}2

=
n∑

i=1
{Yi − α − βTi}2 +

n∑
i=1

{γ⊤X̃i}2 − 2
n∑

i=1
{(Yi − α − βTi)γ⊤X̃i}
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No Interaction model: Consistency (2)

• Notice that the last term converges to

E[(Yi − α − βTi)γ⊤X̃i ] = E[Yiγ
⊤X̃i ] − αγ⊤

=0︷ ︸︸ ︷
E[X̃i ] −β

=E[Ti ]γ⊤E[X̃i ]=0︷ ︸︸ ︷
E[Tiγ

⊤X̃i ]
= E[Yiγ

⊤X̃i ]

where E[TiX i ] = E[Ti ]E[X̃ i ] by randomization of treatment and
E[X̃ i ] = 0 thanks to demeaning.

• So, the parameter of interest β only depends on the first term
• Specification of covariates γ⊤X̃i does not matter

• Takeaway: OLS estimator is consistent for PATE
even if model is incorrect
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No Interaction model: Efficiency

• Theorem 7.1 of Imbens and Rubin (2015):
√

n(β̂ − β) d−→ N
(

0,
E[(Ti − p)2(Yi − α − βTi − γ⊤X̃i)2]

p2(1 − p)2

)
where p = n1

n = P(Ti = 1)

• If covariates predict outcome well, Yi − α − βTi − γ⊤X̃i becomes
smaller

• Takeaway: Controlling X̃ improves efficiency if model is correct
• Efficiency gains can be lost under misspecifications (Freedman,

2008)
• Though in most cases efficiency improves. . .
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Fully-interacted model (1)

• Consider the model with interaction

Yi = α + βTi + γ⊤X̃i + δ⊤Ti X̃i + ϵi

• Notice that

E[Yi(1) | X̃i ] = E[Yi | Ti = 1, X̃i ] = α + β + (γ + δ)⊤X̃i

E[Yi(0) | X̃i ] = E[Yi | Ti = 0, X̃i ] = α + γ⊤X̃i

where E[Yi(t) | X̃i ] = E[Yi | Ti = t, X̃i ] by complete randomization
(i.e., {Yi(t), Xi} ⊥ Ti)
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Fully-interacted model (2): Imputation Estimator

• Consider treated unit (i.e., Ti = 1). Then, Yi = Yi(1), and Yi(0)
is missing.

• But we can impute Ŷi(0) using the fully interacted model
• In this case, the estimated treatment effect for that unit (τi) is

written as

τ̂i = Yi(1) − Ŷi(0) = Yi − α̂ − γ̂⊤X̃i

• On the other hand, for the control unit,

τ̂i = Ŷi(1) − Yi(0) = α̂ + β̂ + γ̂⊤X̃i + δ̂⊤X̃i − Yi
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Fully-interacted model (3): Imputation Estimator
• Thus, the ATE estimator is written as

1
N

n∑
i=1

τ̂i =

Imputation Estimator︷ ︸︸ ︷
1
N

n∑
i=1

{
Ti

(
Yi(1) − Ŷi(0)

)
+ (1 − Ti)

(
Ŷi(1) − Yi(0)

)}

= 1
N

n∑
i=1

{
Ti(Yi − α̂ − γ̂⊤X̃i) + (1 − Ti)(α̂ + β̂ + γ̂⊤X̃i + δ̂⊤X̃i − Yi)

}

• You can show 1
N

∑n
i=1 τ̂i = β̂ (below I show it)

• Only takeaway is “regression gives you imputation estimator”

• Recall that residuals are orthogonal with regressor, which suggests
1 T1 X̃1 T1X̃1
...

...
1 Tn X̃n TnX̃n


⊤

︸ ︷︷ ︸
=Transpose of Regressor


Y1 − α̂ − β̂T1 − γ̂⊤X̃1 − δ̂⊤T1X̃1

...
Yn − α̂ − β̂Tn − γ̂⊤X̃n − δ̂⊤TnX̃n


︸ ︷︷ ︸

=Residuals

= 0
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Fully-interacted model (4): Imputation Estimator
• The previous matrix calculation gives you{ ∑n

i=1(Yi − α̂ − β̂Ti − γ̂⊤X̃i − δ̂⊤Ti X̃i) = 0∑n
i=1 Ti

(
Yi − α̂ − β̂Ti − γ̂⊤X̃i − δ̂⊤X̃i

)
= 0

• The previous two formulas give you
n∑

i=1
(1 − Ti)

(
Yi − α̂ − β̂Ti − γ̂⊤X̃i − δ̂⊤Ti X̃i

)
= 0

• Therefore, by noticing Ti(1 − Ti) = 0,

n∑
i=1

Ti
(
Yi − α̂ − β̂ − γ̂⊤X̃i − δ̂⊤X̃i

)
= 0

n∑
i=1

(1 − Ti)
(
Yi − α̂ − γ̂⊤X̃i

)
= 0
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Fully-interacted model (5): Imputation Estimator

• Using these equalities, the expression above simplifies to

1
N

N∑
i=1

τ̂i = 1
N

N∑
i=1

(
β̂ + δ̂⊤X̃i

)
= β̂

where tha last equality is because X̃i is demeaned.

• Takeaway: Fully-interacted model gives you imputation estimator
• You can similarly show that it can be interpreted as projection

estimator

β̂ = 1
N

N∑
i=1

{
Ŷi(1) − Ŷi(0)

}

• These are about the interpretation of β̂ (coefficient in regression)
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Fully-interacted model (6): Misspecification

• Takeaway 1: β̂ from fully-interacted model is consistent for
PATE even if model is incorrect

• You can prove it using the same logic as in no-interaction case

• Takeaway 2: β̂ from fully-interacted model is at least as efficient
as the difference-in-means estimator even if model is incorrect

• In estimatr package, there is lm_lin function for the implementation

• But these are under complete randomization!
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Regression Adjustment under Stratified Design
• Stratified Design: Randomize treatment within strata

• We have so far assumed complete randomization
• Complete randomization → covariates and treatment are

independent
• Under stratified design, strata and treatment can be correlated

• Linear model with strata fixed effects
Yi = αstratai + βTi + ϵi

• The estimator β̂ converges to the weighted average of strata
specific ATE:

β̂
p−→

∑J
j=1 wj

Strata j’s weight︷ ︸︸ ︷
kj(1 − kj) ·

Strata j’s ATE︷ ︸︸ ︷
E[Yi(1) − Yi(0) | stratai = j]∑J

j=1 wjkj(1 − kj)

where wj = nj/n and kj = nj1/nj

• β̂ converges to PATE either (i) when kj is identical across strata
or (ii) when strata-specific ATE is identical across strata
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Cluster Randomized Trials
• We assume no interference (implied by consistency)

• Interference: potential outcome is function of other people’s
treatment status

• Cluster randomized experiment: assign treatment at the
cluster level

• We allow spillover within each cluster
• We assume no spillover across clusters

• Notation
• j ∈ {1, · · · , J}: cluster indicator
• i ∈ {1, · · · , mj}: individual indicator
• Tj : treatment indicator for cluster j
• Yij : outcome for individual i at cluster j

• Because everyone in each cluster is in the same treatment status,

Yij(T1j , · · · , Tmj j)︸ ︷︷ ︸
Allowing interference within cluster j

= Yij(Tj)
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Efficiency Loss by Clustering
• Inference under clustering: regarding each cluster as unit

ATE Estimator: τ̂cluster = 1
J1

J∑
j=1

Tj Ȳj︸ ︷︷ ︸
Avg. of Treated Cluster

− 1
J0

J∑
j=1

(1 − Tj)Ȳj︸ ︷︷ ︸
Avg. of Control Cluster

Variance Estimator: ̂V[τ̂cluster] = var(Ȳ1(1))
J1

+ var(Ȳ0(t))
J0

• From the slide 5 of module 4.1, if we assume mj = m for all j ,

var(Ȳj(t))
Jt︸ ︷︷ ︸

Var w/ Clustering for Ti =t

= var(Yij(t))
Jtm︸ ︷︷ ︸

Variance w/o Clustering for Ti =t

(
1 + (m − 1)ρt

)
︸ ︷︷ ︸
≥1 if ICC is positive

where ρt = Corr(Yij(t), Yi ′j(t)) is ICC

• ICC is typically positive → Clustering typically loses efficiency
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Extra Slides: Cluster Robust Standard Errors (CR)
• As with the previous case,

√
n(β̂−β) =

√
n(X⊤X)−1X⊤ϵ =

(1
n

J∑
j=1

mj∑
i=1

XijX⊤
ij

)−1( 1√
n

J∑
j=1

mj∑
i=1

Xijϵij

)
• Independence holds across clusters (not within clusters!)

• Slight modification is needed for the previous proof (regard each
cluster as unit)

• Cluster Robust Variance Estimator( J∑
j=1

X⊤
j Xj

)−1

︸ ︷︷ ︸
Bread

( J∑
j=1

X⊤
j ϵ̂j ϵ̂j

⊤Xj

)
︸ ︷︷ ︸

Meat

( J∑
j=1

X⊤
j Xj

)−1

︸ ︷︷ ︸
Bread

• CR2 (Bias-adjustment): Same idea as HC2
• Same degrees of freedom adjustment is available for small sample
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