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Logistics

e Midterm: October 15th, 2 hours

e Review Section: October 8th
e Extra Office Hour: October 14th 1:30-3:00pm

e What you should do before midterm

Solve review questions

Solve practice midterm

Check solutions of problem sets
Understand details of class materials



Today’s Agenda

e Review of Linear Regression

e Basic Properties
Best linear approximation
Ordinal Least Squares (OLS)
Frisch-Waugh-Lowell (FWL) theorem
Asymptotic Variance (Extra slides, optional)

e Regression and Causal Inference

e Case 1: No Control
e Case 2: With control (no interaction)
e Case 3: With control (with interaction)
e Recommended reading: Ch7 of Imbens and Rubin (2015)

e Case 4: Stratified Design

e Cluster Randomized Experiment
e Related to Problem Set 4



Review: Linear Regression (1)

e Linear regression with K predictors is written as

Yi=Po+ b1 Xii+ -+ P Xki +e€i, Elei | Xii,--- , Xki] =0

Strict Exogeneity

o Let X; =[1,X1;,--+,Xki]" and B = [Bo, - ,Bk]". Then,
Yi=X{B+e Ele|X]=0

e Equivalently,
E[Y; | Xi] =X/ 8

e Regression is conditional expectation function of Y; given X;



Review: Linear Regression (2)

e Note that E[e; | X;] = 0 implies (i) E[e;] = 0 and (ii) E[¢;X;] =0
o E[E,’] = E[E[E,’ | X,]] = E[O] =0
L J ]E[€,'X,'] = E[E[G,‘X,‘ | X,]] = E[X,’E[€,’ | X,]] = E[X, . 0] = 0

e Thus, the error ¢; is uncorrelated with regressor X;
° COV(X,‘7 6,') = E[E,’X,’] — ]E[G,]E[X,] = 0



Review: Projection Coefficient

Consider minimizing the mean squared prediction error

S(8) = E[(Y; — X{ B)Y]
=E[Y?] - 28" E[X; Y] + BTE[X;X/]8

Taking the derivative, we get

958) _ _omix, v + 2E[X,XT]8

B

This gives the projection coefficient 3

B = EXX]]) 'EX;Yi]

Check this by inserting Y; = X3 + .



Why linear regression? Why projection?

Linear regression is a best linear approximation of conditional

expectation function m(X;) = E[Y; | X|]
To see this, consider minimizing the mean squared loss between

m(X;) and X/ 8
d(B) = E[(m(X;) — X; B)’]

Notice that this minimization problem is just replacing Y; with

m(X;) from the previous one.
Thus the best linear approximation 3 is given by

B = [EXX]]) T EX;m(X;)]
= (BX:X]) TEDGE]Y; | X]]
= (EXX]) "E[E[X;Y; | X]]
= (E[X:X]])) 'E[X;Y)] = 8

Projection coefficient is equal to the best linear approximation of
m(X;) = E[Y; | Xi]



Review: Ordinary Least Squares (OLS)

Let's use matrix notation. Bo
Y1 1 Xuu - Xki B
Y=]:|,X=1]: 1 1|, B=,

Yn 1 an e XKn ﬁ.K

OLS estimator is given by

. 1 =il i
B=(XTX)"'XTY = (an;x,T> (HZX,-Y,)
i=1 i=1

This estimator is unbiased (Hint: show E[3 | X] = 3)

e Once you show E[3 | X] = 3, then use the law of iterated
expectation!

Also, residual is orthogonal: XTé = XT(Y —X8) =0
e Hint: Insert the definition of 8 = (XTX)"1XTY



Frisch-Waugh-Lowell (FWL) theorem

e Consider multiple regressions with K regressors
Yi=Po+ b1 Xui+ -+ PxXui+e€i, Elei| X, . Xki] =0
e Estimator for B¢ needs matrix — often hard to make a proof

e FWL theorem gives another formula for k-th coefficient
B Cov(Y,-,)N(k,-)

Bk = V%l for ke {l,--- K}

where X is the residual obtained by

Xi =0+ > X + Xei
JF#k



Frisch-Waugh-Lowell (FWL) theorem: Proof

Cov(Yi, Xii) _ Cov(Bo + B1X1i + - - - + B Xi + €1y Xi)

/ ] (. def of Y;)
ViXe] V[Xi]
B Cov(BrXi, Xxi)
- V[ Xi]
_ Cov(Br{yo + Z#,: v Xji + )?ki}, )N<ki) (.- def of Xy)
VXl ‘ I
_ Cov(BiXi, Xxi)

ViRl (" Cov(Xui, Xji) = 0 for j # k)

= Bk

where the second line is because

° Cov()N(k;,Xj;) = 0 for any j # k y
e Cov(Xj,e)=0forall I €{1,---,K} — Cov(Xki,e) =0

10



Frisch-Waugh-Lowell (FWL) theorem: Remark

e Note that you can also residualize the outcome; i.e.,

o COV( \N/,', )N<k,')

Br = ViXe] for ke {1, -, K}

where Y; is the residual obtained by

Yi=ao+ Y aXi+ Y
7k

e FWL Theorem is a tool for you to make the proof of multiple
regressions without using matrix
e This can be a helpful tool for exam / problem set
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Extra slides: Tools for Asymptotic Variance

e Law of Large Numbers (LLN): If Xj,---, X, are i.i.d.,

_ 1 o
X=-> Xi=E[X;
”,-; — E[Xi]

e Central Limit Theorem (CLT): If Xy,--- , X, are i.i.d.,
V(X — E[X]]) < N (0, V[Xi])

e Slutsky’s Lemmal: If X, i> X for some random variable X and
Y, 2y ¢ for some constant c,

X, Y, & cx

1If you haven't seen it, don't worry. Not required for midterm.
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Extra slides: Asymptotic Variance (1)

e Goal: To understand where sandwich comes from.
e Don't worry even if you can't get all the details (it is optional)

e Recall that the estimator for B is given by
R 1 n -1 1 n
= (X"X)"IXTY = ( x,xT) ( X,-Y,->
B =(X'X) . ; j . ;

e Because Y = X3 + ¢,
B=X"X)"XT(XB+e)=8+(X"X)"'XTe

V(B - B) = v/n(XTX)XTe = ( ZX XT) 1 (\%ixiﬁ)
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Extra slides: Asymptotic Variance (2)

e Notice that by law of large numbers, the first term converges in
probability to

1 n
- SXX B EXTX]
i=1

e On the other hand, because each X;¢; are i.i.d., by central limit
theorem, the second term converges in distribution to

3 Xie = Vi £ 3 Xie S MO E(XT (X))

—_——
Form of Avg!

e Note that mean of normal distribution here is 0 because
E[X,‘G,‘] =0
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Extra slides: Asymptotic Variance (3)

e Therefore,
V(B = B) =/n(XTX)'XTe
— N(o, E[XTX]—1E[XTEJX]E[XTX]—1>

Asymptotic Variance

o Homoskedasticity: Vle; | X;] = o2
e This gives V[e; | X;] = E[¢? | X;] — E[e; | X;]* = E[¢? | X/]
N—_——

=0
E[Xee X'] = E[E[Xee X" | X]] (.- Law of Iterated Expectation)

= E[XE[ee' | X]X] = o2E[X T X]
=02/
and thus the asymptotic variance is simplified to

EXTX]'E[X ee"X]E[XX] ! = 6°E[X " X] 1

e Homoskedasticity is usually not plausible 15



Extra slides: Eicker-Huber-White (EHW) robust
variance estimator (HCO)

e Eicker-Huber-White (EHW) robust variance estimator (or
HCO)
(XTX)"1XT diag(e?) X (X"X)?
—_— ——— —

——
Bread Meat Bread

e Asymptotically consistent

e i.e., as N increases, it approaches to the true value
e But this has some bias in finite sample

e We will see it with simulation (two slides later)
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Extra slides: HC2 variance estimator

e HC2 heteroskedasticity-robust variance estimator
e Make finite sample bias smaller

22

(XTX)1XT diag(l Ci >X(XTX)1

, _—
Bread - Bread

Meat
where p; = X;(X"X)~1X;

e When X; =[1, T;]" (i.e., no control),

_[1]([Zmr STy
pii = [TI] (lz;’zllT; Z?:ll T,J) [Ti]

! _ N\ JYm (i Ti=1)
_m(nl(l_Tl)+n0Tl> _{1/n0 (if T,-:O)

e Takeaway: HC2 becomes Neyman Variance with no control
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Extra slides: Many Robust Standard Errors

e Which robust SEs should we use in practice?

e Do not use homoskedastic one unless you check it
e When sample size is large, all robust SEs are consistent
e For small sample, use degrees of freedom adjustment from Bell and

McCaffrey (2002)
e Simulation results (from ECON2110 Lecture 12 Slide)

e Homoskedasticity — Does not have a proper coverage (95%)
e HC1 / HC2 — proper coverage for large sample, but some
finite-sample bias

N=1000 N=100 N=50 N=20

Homoskedasticity 91.72% 90.77% 90.07% 88.75%
HC1 95.42% 93.68% 92.17% 88.62%
HC2 95.45% 93.97% 92.81% 90.38%
HC2 w/ dof adjust 95.51%  94.8% 94.58% 96.38%




Regression and Causal Inference: No Control

e Consider the simple linear regression

Yi=a+ BT+ ¢ equivalently E[Y;| T; =t]=a+ 5t
e Under complete randomization and consistency,
E[Y: | Ti = t] = E[Yi(t) | Ti = t] = E[Yi(¢)]
e The regression above is written as
E[Yi(t)] = a + Ot
e Thus

a =E[Y;(0)], B =E[Yi(1)]-E[Yi(0)] (= Average Treatment Effect)

e Takeaway: Regression estimates ATE (same as diff-in-means)
e Linearity does not matter
e HC2 variance is numerical identical to Neyman's variance
19



No Interaction model: Consistency (1)

e After randomization, there might be imbalance in covariates
e In this case, covariate adjustment helps improving efficiency

e Consider the multiple regression with demeaned pre-treatment
covariates

Yi=a+BTi+v Xi+e

e OLS estimator minimizes the mean squared error
W ~

Y AYi—a—BTi—yTX;)

i=1

=Y {Yi—a=BT¥+Y {7 X} =2> {(Yi—a—- BTy X}
i=1 i=1 i=1

20



No Interaction model: Consistency (2)

e Notice that the last term converges to

=0 =E[Ti]y TE[X;]=0
s TS T —~ /—’_l_%
E[(Yi —a—=8Ti)y Xi| =E[Yiy Xi] —avy E[X]-8 E[Tiv X|]

=E[Yiy"X/]

where E[T; X;] = E[T;]E[X;] by randomization of treatment and
E[X;] = 0 thanks to demeaning.

e So, the parameter of interest 5 only depends on the first term
e Specification of covariates 'yT)N(,- does not matter

e Takeaway: OLS estimator is consistent for PATE
even if model is incorrect

21



No Interaction model: Efficiency

e Theorem 7.1 of Imbens and Rubin (2015):

sy 5 wr(o EITi—pP(Yi 0= BT~ 7%
ﬁ(ﬂ_ﬁ)_”v(()’ p3(1 — p)? )

e If covariates predict outcome well, Y; —a — 8T; — 'yT)N(,- becomes
smaller

o Takeaway: Controlling X improves efficiency if model is correct

e Efficiency gains can be lost under misspecifications (Freedman,
2008)
e Though in most cases efficiency improves. . .

22



Fully-interacted model (1)

e Consider the model with interaction

Yi=a+BTi+v X +8 TiX;+¢
e Notice that

E[Yi(1) | X]=E[Y; | Ti=1,X]=a+ B+ (v+8)"X
E[Y;(0) | X] =E[Y; | Ti=0,X] = a+~"X;

where E[Y;(t) | X;] = E[Y; | T; = t,X;] by complete randomization
(i.e., {Y,'(Z‘),X,'} 1L T,')

23



Fully-interacted model (2): Imputation Estimator

e Consider treated unit (i.e., T; = 1). Then, Y; = Y;(1), and Y;(0)
is missing.

e But we can impute Y;(0) using the fully interacted model

e In this case, the estimated treatment effect for that unit (7;) is
written as

24



Fully-interacted model (3): Imputation Estimator

e Thus, the ATE estimator is written as

Imputation Estimator

e You can show % 27, #; 3 (below | show it)

e Only takeaway is “regression gives you imputation estimator”

e Recall that residuals are orthogonal with regressor, which suggests
- oo T A = A -
1 77 Xy TiX; Yi—&— BT —4"X1 =0 T1 X,
: : : =0
1 T, Xo T Xo| |Yo—Ga—BT,—4"X,—86" T X,

=Transpose of Regressor —=Residuals

25



Fully-interacted model (4): Imputation Estimator

e The previous matrix calculation gives you

Z/ 1( BT -
Z,IT(Y—a—BT )“(,—ST)”(,-):

e The previous two formulas give you

NA-T)Yi—a-BTi—4"X;—86TTX;) =0

e Therefore, by noticing T;(1 — T;) =0,

26



Fully-interacted model (5): Imputation Estimator

e Using these equalities, the expression above simplifies to

N LA )
=N Hi==> (B+0' X)) =5
IPSAN S

where tha last equality is because X; is demeaned.

e Takeaway: Fully-interacted model gives you imputation estimator

e You can similarly show that it can be interpreted as projection
estimator

N

b= 5 v - Vo)

i=1

e These are about the interpretation of 3 (coefficient in regression)

27



Fully-interacted model (6): Misspecification

e Takeaway 1: B from fully-interacted model is consistent for
PATE even if model is incorrect
e You can prove it using the same logic as in no-interaction case

e Takeaway 2: (5 from fully-interacted model is at least as efficient
as the difference-in-means estimator even if model is incorrect
e In estimatr package, there is im_lin function for the implementation

e But these are under complete randomization!

28



Regression Adjustment under Stratified Design

e Stratified Design: Randomize treatment within strata
e We have so far assumed complete randomization
e Complete randomization — covariates and treatment are
independent
e Under stratified design, strata and treatment can be correlated
e Linear model with strata fixed effects

Yi = Qstrata; T BTI + €
e The estimator BA converges to the weighted average of strata

specific ATE:
Strata j's weight Strata j's ATE

Liw k(1 — k) -E[Yi(1) — Yi(0) | strata; = j]
Y1 wiki(1 — kj)

where w; = n;/n and kj = nj1/n;

RS

e /3 converges to PATE either (i) when k; is identical across strata
or (ii) when strata-specific ATE is identical across strata

29



Cluster Randomized Trials

We assume no interference (implied by consistency)
e Interference: potential outcome is function of other people’s
treatment status
Cluster randomized experiment: assign treatment at the
cluster level
e We allow spillover within each cluster
e We assume no spillover across clusters
Notation
Jj€{1,---,J}: cluster indicator
e ic{l,---,mj}: individual indicator
e T;: treatment indicator for cluster j
e Y outcome for individual i at cluster j

Because everyone in each cluster is in the same treatment status,

Yi(Tajs s Tmyj) = Y;(T))

J

Allowing interference within cluster j



Efficiency Loss by Clustering

e Inference under clustering: regarding each cluster as unit

1L i _
ATE Estimator:  Fuster = 2. 1Y, — =Y (1-T)Y,
=t Jo i
—_———

Avg. of Treated Cluster  Avg. of Control Cluster
var(Yi(1)) n var( Yo(t))

Variance Estimator:  V[fauster] = y y
1 b

e From the slide 5 of module 4.1, if we assume m; = m for all j,

v(jf(ﬂ) _ V(Jym(t)) (1+(m-1)p:)
NI —_————

Var w/ Clustering for Tj=t Variance w/o Clustering for T;=t >1 if ICC is positive

where p; = Corr(Yj;(t), Yir(t)) is ICC

e ICC is typically positive — Clustering typically loses efficiency
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Extra Slides: Cluster Robust Standard Errors (CR)

e As with the previous case,

VA(B-8) = VAXTX) X Te = (] S5 XX, )1( iixueu)

j=1i=1 _]].Il

e Independence holds across clusters (not within clusters!)

e Slight modification is needed for the previous proof (regard each
cluster as unit)

e Cluster Robust Variance Estimator

(Z X/%) (Zx%aea ;) (j:ile ;)

Bread Meat Bread

-1

e CR2 (Bias-adjustment): Same idea as HC2
e Same degrees of freedom adjustment is available for small sample
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