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Logistics

e Please look at the solution of Problem Set 2

e Great job everyone

e | know conditional randomization test is hard, so please take a look
at the solution!

e |t is important to understand the idea



Mathematical Tool: Variance
e Variance for random variable X; is defined as
V[Xi] = E[(X; — E[X])?]

e Another useful representation

VIXi] = E[X?] - E[Xi]”

e Properties
o V[X; + Y] = V[Xi] + V[Y]] + 2Cov(X;, Y})
e If ais constant, V[a] =0
e If ais constant, V[aXj] = a®V[X]]
e Law of Total Variance:

V[Xi]l = VIE[X; | Yi]] + E[V[Xi | Yil]



Two inference frameworks: Overview

e within sample inference (finite-population framework)
e Given data on n units (i = 1,--- , n), we are interested in the
average treatment effect on that sample
e Only source of randomness is treatment assignment
e Estimand: Sample Average Treatment Effect (SATE)

reare = % (Y1) - Yi(0))
i=1

¢ population inference (super-population framework)
e Generalizing the inference on the obtained sample to some

population of interest
e Source of randomness is (1) treatment assignment and (2)

sampling
e Estimand: Population Average Treatment Effect (PATE)

Teate = E[Yi(1) — Y;(0)]
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Estimand and Estimator

e Can you differentiate 7, 7, , and W] ?
e 7 : Estimand for Average Treatment Effect

e Estimand: Target quantity of interest

roare = 3 04D - Yi(O)),  oare = EIVi(1) — Yi(0)]
i=1

e 7 : Estimator of Average Treatment effect

e Estimator: something you can calculate from data
e In the case of SATE and PATE,

. . 1 — 1 «
TsaTe = Tpate = —- Z gV = - Z(l -T)Y:
153 01
° . Estimand of Variance of ATE Estimator

e V[7] : Estimator of Variance of ATE Estimator
e Take a squared root to get standard error



Difference-in-Means Estimator

e Recall that estimand for PATE and SATE is

rsare = XYY < Yi(O)),  7oare = ELYi(1) ~ Y,(0)]
i=1

e Difference-in-Means estimator is

1 1
F==)TY,—=> (1-T)Y,
P Mo =
which is unbiased for both PATE and SATE

e — Justification for point estimate



Unbiasedness Proof (SATE) - (1)

e For SATE, we need to show E[7 | Op] = TsaTE.
e By consistency,

B O = [ 3 TYi— =3 (1- )Y | 0,]
i=1 i=1
| S TV - o Y1 - T)Yi0) | Oy

i=1

e Because we condition on O, = {Y;(1), Yi(0)}7_;, potential
outcomes are not random.

_ ,;lliE[T" | On]Yi(l) — ,;LO zn:E[l — T: | On]Yi(O)
) i=1



Unbiasedness Proof (SATE) - (2)

e By complete randomization, we have Y;(1), Y;(0) L T;. So,

= —ZE[T]Y(l — 721[«:[1 T.]Yi(0

e Now, E[T;] = &+ and E[1 — T;] = ©. So,

_ Iy yvay- LS v

mni3 ho =

= %Z{Yi(l) —Yi(0)} = msaTE
i=1



Unbiasedness Proof (PATE)

We have shown EH 7| Op] = TsaT,

We next show E[7] = Tpate = E[Y(l) — Yi(0)]
E[X]. Thus,

Recall law of iterated expectation: E[E[X | Y]] =

E[#] = B[E[F | O] =E| 1 Y- {%/(1) -
i=1

)]

By linearity of expectation (i.e., E[X + Y] = E[X] + E[Y]),

= & L E[%0) - 0] = EIY(1) - Y0}l = roars
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Tips for Proof

Think about which variable is random

e e.g., In finite-population framework, Y;(t) is fixed and T; is random
Think about the setting

e e.g., which variables are independent of other vairables?
Construct your proof step by step

e Clearly show how you did each transformation in each line
e Do not use multiple operations in one line
e e.g., use consistency — use randomization — ...

Always law of iterated expectation is your friend

E[X] = E[E[X | Y]]
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Neyman Variance Estimator

e Recall that we use difference-in-means estimator for both PATE

and SATE
e We want to know the variance of the difference-in-means

estimator
e For SATE, V[7 | O,] (where O, = {Y;(1), Yi(0)}1-,)
e For PATE, V[7]
e From pre-recorded lecture, we know that

1
VIF | On = - (Zosf + %53 + 2501)
1 0

2 2

VW:%+%
where 1 n
82 = 15 (o) - V(o)
So = — S (V1) - YO)(Y0) - ¥(0))
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Neyman Variance Estimator

e We use Neyman Variance estimator for both PATE and SATE

= — 57 &2
V[Tyon]:V[T]:nf+n—g

which is unbiased for PATE but conservative for SATE.

e Check pre-recorded lecture slide
e Check Review Question 3 for the full derivation of variance.
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Matched-Pair Design: Review

e Motivation
e Blocking improve efficiency — Can we keep blocking?
e Procedure

e Create J = n/2 similar units
e Randomize treatment assignment within each pair

e Estimator

i

Tpair —

J
> Wiy = Yy)
j=1
where

e Yi; is the first outcome in j-th pair

e Y5 is the second outcome in j-th pair

e W, =1 if first unit received treatment and W; = —1 if second
unit received treatment
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Matched-Pair Design: Variance

e Variance
R o2 o2 2
V(Tpair) = 71 -+ 72 - jCOV(Ylj, ng)
——

Var w/o design  within-pair covariance

where “Var w/o design” is the variance under complete randomization.

e |n other words,

. 0% 0’% . 2
V(T) = 7 + 7 S V(Tpair) + jCOV(Ylj-;YQj)

e Notice that n; = ng = J (within each pair, one treated and one
control)
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Matched-Pair Design: Variance Estimator

e Variance Estimator

_— 1 J A 2
V(Tpair) - .j(.j—].)J_Z]_(VVI(Ylj - Y2J) - 7-pair>

e Question: How to optimize matching so that we can maximize
efficiency?
e There are so many ways to pair observations
e Higher within-pair covariance leads to more efficiency gains
e We want to create pair in which all pairs are similar enough
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Optimal Matching: ldea

First, calculate the distance between any two units

e \We use Mahalanobis distance, in which distance between
observation i/ and j is defined as

D(Xi, Xj) = \/(X; — X;)T Var[X]=1(X; — X))

Intuition: Distance between covariates normalized by their

variance
Goal: Find the matching by which we can minimize the sum of

distance
You will see how different algorithm leads to different variance in

Question 2
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Greedy v.s. Optimal Matching

e Let's think with an example.
e Suppose there are 4 people in the world.

1 3 4
1 1 9 5
2|1 5 9
3 5 12
415 9 12

e NOTE: Diagoal element is missing to avoid the matching of the
same unit.
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Greedy Matching: 2 (a)

e Consider the greedy matching in 2 (a)
e First, compute the distance between all pairs of health clusters.
e Based on this distance matrix, select two clusters which are most
similar and set them aside as a match

A~ WO N =

3 4
9 5
5 9

12
12

e You first select 1 (matching between unit 1 and 2)
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Greedy Matching: 2 (a)

e After matching unit 1 and 2, you cannot use unit 1 or 2 for the
future matching

e For example, matching unit 1 and 3 is infeasible since unit 1 is
already matched with unit 2

1 2 3 4
1 1 9 5
2|1 5 9
3 5 12
415 9 12

e |n this case, you need to match unit 3 and 4.
e Sum of total distance: 1+ 12 =13
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Greedy Matching: 2 (b)
e Consider the greedy matching in 2 (b)
e Randomly select a cluster and then find the cluster which is most
similar to it.
e Set them aside as a matched pair.
e Suppose that you randomly pick up unit 2.
e The closest for unit 2 is unit 1.
e As you match unit 2 and 1, you cannot use these units for the
future matching.

1 2 3 4
1 1 9 5
21 5 9
3 5 12
415 9 12

e Sum of total distance: 1+ 12 =13
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Optimal Matching

Greedy matching is suboptimal
e In the previous table, minimum distance is 10 ((1,4) and (2,3))

Optimal Matching: Directly minimize the sum of distance
e Algorithm: Optimal nonbipartite matching

Optimization problem is written as

n
i=1
n

n
st. Y My=1, > M;=1
i=1 j=1

Constraint: Each unit is used for matching only once

1 2 3 4
1 1 9 5
21 5 9
3 5 12
415 9 12
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