
Section: Module 3
Average Treatment Effect

Kentaro Nakamura

GOV 2002

September 26th, 2025

1



Logistics

• Please look at the solution of Problem Set 2
• Great job everyone
• I know conditional randomization test is hard, so please take a look

at the solution!
• It is important to understand the idea
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Mathematical Tool: Variance
• Variance for random variable Xi is defined as

V[Xi ] = E[(Xi − E[Xi ])2]

• Another useful representation

V[Xi ] = E[X 2
i ] − E[Xi ]2

• Properties
• V[Xi + Yi ] = V[Xi ] + V[Yi ] + 2Cov(Xi , Yi)
• If a is constant, V[a] = 0
• If a is constant, V[aXi ] = a2V[Xi ]
• Law of Total Variance:

V[Xi ] = V[E[Xi | Yi ]] + E[V[Xi | Yi ]]
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Two inference frameworks: Overview
• within sample inference (finite-population framework)

• Given data on n units (i = 1, · · · , n), we are interested in the
average treatment effect on that sample

• Only source of randomness is treatment assignment
• Estimand: Sample Average Treatment Effect (SATE)

τSATE = 1
N

n∑
i=1

{Yi(1) − Yi(0)}

• population inference (super-population framework)
• Generalizing the inference on the obtained sample to some

population of interest
• Source of randomness is (1) treatment assignment and (2)

sampling
• Estimand: Population Average Treatment Effect (PATE)

τPATE = E[Yi(1) − Yi(0)]
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Two inference frameworks: Overview
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Estimand and Estimator
• Can you differentiate τ , τ̂ , V[τ̂ ] , and V̂[τ̂ ] ?
• τ : Estimand for Average Treatment Effect

• Estimand: Target quantity of interest

τSATE = 1
N

n∑
i=1

{Yi(1) − Yi(0)}, τPATE = E[Yi(1) − Yi(0)]

• τ̂ : Estimator of Average Treatment effect
• Estimator: something you can calculate from data
• In the case of SATE and PATE,

τ̂SATE = τ̂PATE = 1
n1

n∑
i=1

TiYi − 1
n0

n∑
i=1

(1 − Ti)Yi

• V[τ̂ ] : Estimand of Variance of ATE Estimator

• V̂[τ̂ ] : Estimator of Variance of ATE Estimator
• Take a squared root to get standard error
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Difference-in-Means Estimator

• Recall that estimand for PATE and SATE is

τSATE = 1
N

n∑
i=1

{Yi(1) − Yi(0)}, τPATE = E[Yi(1) − Yi(0)]

• Difference-in-Means estimator is

τ̂ = 1
n1

n∑
i=1

TiYi − 1
n0

n∑
i=1

(1 − Ti)Yi

which is unbiased for both PATE and SATE

• → Justification for point estimate
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Unbiasedness Proof (SATE) - (1)
• For SATE, we need to show E[τ̂ | On] = τSATE .
• By consistency,

E[τ̂ | On] = E
[ 1

n1

n∑
i=1

TiYi − 1
n0

n∑
i=1

(1 − Ti)Yi | On

]

= E
[ 1

n1

n∑
i=1

TiYi(1) − 1
n0

n∑
i=1

(1 − Ti)Yi(0) | On

]

• Because we condition on On = {Yi(1), Yi(0)}n
i=1, potential

outcomes are not random.

= 1
n1

n∑
i=1

E[Ti | On]Yi(1) − 1
n0

n∑
i=1

E[1 − Ti | On]Yi(0)
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Unbiasedness Proof (SATE) - (2)
• By complete randomization, we have Yi(1), Yi(0) ⊥ Ti . So,

= 1
n1

n∑
i=1

E[Ti ]Yi(1) − 1
n0

n∑
i=1

E[1 − Ti ]Yi(0)

• Now, E[Ti ] = n1
n and E[1 − Ti ] = n0

n . So,

= 1
n1

n1
n

n∑
i=1

Yi(1) − 1
n0

n1
n

n∑
i=1

Yi(0)

= 1
n

n∑
i=1

{Yi(1) − Yi(0)} = τSATE
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Unbiasedness Proof (PATE)

• We have shown E[τ̂ | On] = τSATE
• We next show E[τ̂ ] = τPATE = E[Yi(1) − Yi(0)]
• Recall law of iterated expectation: E[E[X | Y ]] = E[X ]. Thus,

E[τ̂ ] = E[E[τ̂ | On]] = E
[ 1

N

n∑
i=1

{Yi(1) − Yi(0)}
]

• By linearity of expectation (i.e., E[X + Y ] = E[X ] + E[Y ]),

= 1
N

n∑
i=1

E
[
Yi(1) − Yi(0)

]
= E[Yi(1) − Yi(0)] = τPATE
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Tips for Proof

• Think about which variable is random
• e.g., In finite-population framework, Yi(t) is fixed and Ti is random

• Think about the setting
• e.g., which variables are independent of other vairables?

• Construct your proof step by step
• Clearly show how you did each transformation in each line
• Do not use multiple operations in one line
• e.g., use consistency → use randomization → . . .

• Always law of iterated expectation is your friend

E[X ] = E[E[X | Y ]]
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Neyman Variance Estimator
• Recall that we use difference-in-means estimator for both PATE

and SATE
• We want to know the variance of the difference-in-means

estimator
• For SATE, V[τ̂ | On] (where On = {Yi(1), Yi(0)}n

i=1)
• For PATE, V[τ̂ ]

• From pre-recorded lecture, we know that

V[τ̂ | On] = 1
n

(n0
n1

S2
1 + n1

n0
S2

0 + 2S01

)
V[τ̂ ] = σ2

1
n1

+ σ2
0

n0

where
S2

t = 1
n − 1

n∑
i=1

(Yi(t) − Ȳ (t))2

S01 = 1
n − 1

n∑
i=1

(Yi(1) − Ȳ (1))(Yi(0) − Ȳ (0))

12



Neyman Variance Estimator

• We use Neyman Variance estimator for both PATE and SATE

̂V[τ̂ | On] = V̂[τ̂ ] = σ̂2
1

n1
+ σ̂2

0
n0

which is unbiased for PATE but conservative for SATE.

• Check pre-recorded lecture slide
• Check Review Question 3 for the full derivation of variance.
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Matched-Pair Design: Review
• Motivation

• Blocking improve efficiency → Can we keep blocking?
• Procedure

• Create J = n/2 similar units
• Randomize treatment assignment within each pair

• Estimator

τ̂pair = 1
J

J∑
j=1

Wi(Y1j − Y2j)

where

• Y1j is the first outcome in j-th pair
• Y2j is the second outcome in j-th pair
• Wi = 1 if first unit received treatment and Wi = −1 if second

unit received treatment
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Matched-Pair Design: Variance

• Variance

V(τ̂pair) = σ2
1

J + σ2
2

J︸ ︷︷ ︸
Var w/o design

− 2
J Cov(Y1j, Y2j)︸ ︷︷ ︸

within-pair covariance

where “Var w/o design” is the variance under complete randomization.

• In other words,

V(τ̂) = σ2
1

J + σ2
2

J = V(τ̂pair) + 2
J Cov(Y1j, Y2j)

• Notice that n1 = n0 = J (within each pair, one treated and one
control)
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Matched-Pair Design: Variance Estimator

• Variance Estimator

V̂(τ̂pair) = 1
J(J − 1)

J∑
j=1

(
Wi(Y1j − Y2j) − τ̂pair

)2

• Question: How to optimize matching so that we can maximize
efficiency?

• There are so many ways to pair observations
• Higher within-pair covariance leads to more efficiency gains
• We want to create pair in which all pairs are similar enough
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Optimal Matching: Idea

• First, calculate the distance between any two units
• We use Mahalanobis distance, in which distance between

observation i and j is defined as

D(Xi , Xj) =
√

(Xi − Xj)T Var[X ]−1(Xi − Xj)

• Intuition: Distance between covariates normalized by their
variance

• Goal: Find the matching by which we can minimize the sum of
distance

• You will see how different algorithm leads to different variance in
Question 2
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Greedy v.s. Optimal Matching

• Let’s think with an example.
• Suppose there are 4 people in the world.

1 2 3 4
1 1 9 5
2 1 5 9
3 9 5 12
4 5 9 12

• NOTE: Diagoal element is missing to avoid the matching of the
same unit.

18



Greedy Matching: 2 (a)

• Consider the greedy matching in 2 (a)
• First, compute the distance between all pairs of health clusters.
• Based on this distance matrix, select two clusters which are most

similar and set them aside as a match

1 2 3 4
1 1 9 5
2 1 5 9
3 9 5 12
4 5 9 12

• You first select 1 (matching between unit 1 and 2)
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Greedy Matching: 2 (a)

• After matching unit 1 and 2, you cannot use unit 1 or 2 for the
future matching

• For example, matching unit 1 and 3 is infeasible since unit 1 is
already matched with unit 2

1 2 3 4
1 1 9 5
2 1 5 9
3 9 5 12
4 5 9 12

• In this case, you need to match unit 3 and 4.
• Sum of total distance: 1 + 12 = 13
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Greedy Matching: 2 (b)
• Consider the greedy matching in 2 (b)

• Randomly select a cluster and then find the cluster which is most
similar to it.

• Set them aside as a matched pair.
• Suppose that you randomly pick up unit 2.

• The closest for unit 2 is unit 1.
• As you match unit 2 and 1, you cannot use these units for the

future matching.

1 2 3 4
1 1 9 5
2 1 5 9
3 9 5 12
4 5 9 12

• Sum of total distance: 1 + 12 = 13
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Optimal Matching
• Greedy matching is suboptimal

• In the previous table, minimum distance is 10 ((1, 4) and (2, 3))
• Optimal Matching: Directly minimize the sum of distance

• Algorithm: Optimal nonbipartite matching
• Optimization problem is written as

min
M

n∑
i=1

MijDij

s.t.
n∑

i=1
Mij = 1,

n∑
j=1

Mij = 1

• Constraint: Each unit is used for matching only once

1 2 3 4
1 1 9 5
2 1 5 9
3 9 5 12
4 5 9 12 22


