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Logistics

• Important Dates
• Problem Set 10: Due December 8th
• Review Session: December 8th (CGIS K354)
• Final Exam: December 11th

• Today’s agenda
• Difference-in-Difference (DiD)
• Synthetic Control Methods (SCM)
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Overview: Panel Data / TSCS Data
• Two identification regimes for panel data analysis
• Strict Exogeneity: {Yit(1), Yit(0)} ⊥⊥ Dit′ | X1:T

i , αi , f 1:T

• αi is unit fixed effects, f 1:T is time fixed effects, and X1:T
i are the

entire histories of covariates
• Implication

• No time-varying confounder exists
• No direct effects from past outcomes to the current outcomes
• No feedback from past outcomes to current and future treatment

status
• No carryover effects from current treatments to future treatments

(i.e., no arrows from Dt−1 to Yt or Yt+1)
• Strict exogeneity implies parallel trend assumption

E[Yit(0) − Yis(0) | X1:T
i ] = E[Yjt(0) − Yjs(0) | X1:T

i ]

• Sequential ignorability: {Yit(1), Yit(0)} ⊥⊥ Dit′ | X1:T
i , Y 1:(t−1)

i
• This regime allows the inclusion of time-varying confounder, but

they must be observed
• For identification and estimation under sequential ignorability, see

previous module’s slide (e.g., Marginal Structural Models) 3



Overview: Panel Data / TSCS Data
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DiD for Two Time Periods (1)
• Notation:

• Gi : treatment indicator (Gi = 1 for treatment group)
• Dit = tGi : treatment assignment indicator
• Yit : observed outcome for unit i at time t
• Yit(d): potential outcome for unit i at time t

• Estimand: Average treatment effect for the treated (ATT)

τ = E[Yi1(1) − Yi1(0) | Gi = 1]

• Assumption: Parallel trend

E[Yi1(0) − Yi0(0) | Gi = 1] = E[Yi1(0) − Yi0(0) | Gi = 0]

• We also assume no anticipation assumption

Yi0(1) = Yi0(0)
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DiD for Two Time Periods (2)
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DiD for Two Time Periods (3): Identification
Under the parallel trends assumption,

τ =
{
E[Yi1 | Gi = 1]−E[Yi1 | Gi = 0]

}
−

{
E[Yi0 | Gi = 1]−E[Yi0 | Gi = 0]

}
Proof:

{E[Yi1 | Gi = 1] − E[Yi1 | Gi = 0]} − {E[Yi0 | Gi = 1] − E[Yi0 | Gi = 0]}
= {E[Yi1(1) | Gi = 1] − E[Yi1(0) | Gi = 0]}

− {E[Yi0(0) | Gi = 1] − E[Yi0(0) | Gi = 0]}
= E[Yi1(1) | Gi = 1] − E[Yi1(0) | Gi = 1]︸ ︷︷ ︸

= τATT

+E[Yi1(0) | Gi = 1]

− E[Yi1(0) | Gi = 0] − E[Yi0(0) | Gi = 1] + E[Yi0(0) | Gi = 0]

= τATT +
(
E[Yi1(0) − Yi0(0) | Gi = 1] − E[Yi1(0) − Yi0(0) | Gi = 0]

)
︸ ︷︷ ︸

=0 under parallel trends

= τATT .
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Two-way Fixed Effects for Two Time Periods
• Consider the two-way fixed effects model

Yit = αi + βt + τDit + ϵit

• Now, since Dit = tGi ,

Yi1 − Yi0 = (β1 − β0) + τGi + ϵi1 − ϵi0

which means that there are two ways to estimate τ

• Running two-way fixed effects using the entire data
• Taking the first difference and run regression

• Since Gi is binary, τ is written as

τ = E[Yi1 − Yi0 | Gi = 1] − E[Yi1 − Yi0 | Gi = 0]

which corresponds to DiD estimator!1

• Takeaway: Two-way fixed effects and DiD are equivalent if there are only
two time periods

1The parallel trend assumption implies E[ϵi1 − ϵi0 | Gi ] = E[ϵi1 − ϵi0] = 0
8



Covariate in DiD for Two Time Periods
• You can use time-invariant covariates X i to make conditional

parallel trend assumption

E[Yi1(0) − Yi0(0) | Gi = 1, X i ] = E[Yi1(0) − Yi0(0) | Gi = 0, X i ]

• Estimation strategy
• Outcome regression

• 2 regressions with E[Yi1 − Yi0 | Gi = g , X i ] for g ∈ {0, 1}
• 4 regressions with E[Yit | Gi = g , X i ] for g ∈ {0, 1} and t ∈ {0, 1}

• Propensity score weighting (Abadie 2005)

E
[

Yi1 − Yi0
P(Gi = 1) · Gi − π(X i)

1 − π(X i)

]
where π(X i) = P(Gi = 1 | X i) is propensity score

• Doubly robust estimation (Callaway and Sant’Anna 2021)

E
[

Yi1 − Yi0 − m(X i)
P(Gi = 1) · Gi − π(X i)

1 − π(X i)

]
where m(X i) = E[Yi1 − Yi0 | Gi = 0, X i ].
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Proof: Propensity score weighting (1)
• Let’s prove the identification of weighting estimator.
• Now,

E
[ Yi1 − Yi0
P(Gi = 1) · Gi − π(X i)

1 − π(X i)

]
= E

{
E

[ Yi1 − Yi0
P(Gi = 1) · Gi − π(X i)

1 − π(X i)
| X i

]}
= E

{E[(Yi1 − Yi0)Gi | X i ] − π(X i)E[Yi1 − Yi0 | X i ]
P(Gi = 1)(1 − π(X i))

}
• Then, notice that by the law of total probability,

E[(Yi1 − Yi0)Gi | X i ] = E[Yi1 − Yi0 | Gi = 1, X i ]π(Xi)
and

E[Yi1 − Yi0 | X i ]
= E[Yi1 − Yi0 | X i , Gi = 1]π(X i)

+ E[Yi1 − Yi0 | X i , Gi = 0](1 − π(X i))
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Proof: Propensity score weighting (2)
• Let mg(X i) = E[Yi1 − Yi0 | X i , Gi = g ]. Then,

E
[ Yi1 − Yi0
P(Gi = 1) · Gi − π(X i)

1 − π(X i)

]
= E

{m1(X i)π(X i) − m1(X i)π(Xi)2 − m0(X i)(1 − π(X i))π(X i)
P(Gi = 1)(1 − π(X i))

}
= E

{(1 − π(X i))π(X i){m1(X i) − m0(X i)}
P(Gi = 1)(1 − π(X i))

}
= E

{
π(X i){m1(X i) − m0(X i)}

P(Gi = 1)

}

• Under conditional parallel trend assumption,

m1(X i) − m0(X i) = E[Yi1(1) − Yi1(0) | Gi = 1, X i ] := τ(X i)
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Proof: Propensity score weighting (3)

• Notice that π(X i) = E[Ti | X i ]

E
[ Yi1 − Yi0
P(Gi = 1) · Gi − π(X i)

1 − π(X i)

]
= E

{E[Gi | X i ]τ(X i)
P(Gi = 1)

}
= E

{E[Giτ(X i) | X i ]
P(Gi = 1)

}
= E

{ Giτ(X i)
P(Gi = 1)

}
(∵ L.I.E.)

= E
{ 1 · τ(X i)
P(Gi = 1) | Gi = 1

}
P(Gi = 1)

= E[τ(X i) | Gi = 1] = ATT.

• We can do the similar proof for the doubly robust estimator.
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Staggered Adoption
• In some applications, however, different units receive treatment at

the different timing
• This setting is called staggered adoption

• Importantly, staggered adoption still assumes no switchback in
treatment status
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Two-way fixed effects under staggered adoption (1)
• Under staggered adoption, two-way fixed effects has a lot of

troubles.
• For simplicity, let’s consider the following case with two different

treatment timing
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Two-way fixed effects under staggered adoption (2)
• Under staggered adoption, two-way fixed effects model gives you a

weighted average of all possible 2x2 DiD estimator
• Specifically, let

1. Early vs Never βkU = (yPost(k)
k − yPre(k)

k ) − (yPost(U)
U − yPre(U)

U )

2. Late vs Never βlU = (yPost(l)
l − yPre(l)

k ) − (yPost(U)
U − yPre(U)

U )

3. Early vs Late βk
kl = (yMid

k − yPre(k)
k ) − (yMid

l − yPre(l)
l )

4. Early vs Late βl
kl = (yPost(l)

l − yMid
l ) − (yPost(l)

k − yMid
k )

• Then, Theorem 1 of Goodman-Bacon (2021) shows that β in
TWFE model represents

β = wkUβkU + wlUβlU + wk
klβ

k
kl + w l

klβ
l
kl

where the weight sums up to 1 (wkU + wlU + wk
kl + w l

kl = 1) and

wg ∝ (Share of Group g)2 × Variance of Dit in that group
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Two-way fixed effects under staggered adoption (3)
• Four possible comparisons
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Two-way fixed effects under staggered adoption (4)
• However, you see that βl

kl does not give you treatment effect under
parallel trend

• Comparison group is already treated (forbidden comparison!)
• Specifically, βl

kl is written as

βl
kl = (yPost(l)

l − yMid
l ) − (yPost(l)

k − yMid
k )

= (yPost(l)
l − yMid

l )

−
(

(Y Post(l)
k (0) + ATTPost

k ) − (Y Mid
k (0) − ATTMid

k )
)

= ATTPost
l − (ATTPost

k − ATTMid
k )

so it can be negative if ATTPost
k > ATTMid

k
• This means that it is possible that even if all ATT is positive, the

coefficient can be negative

• Takeaway: In staggered adoption setting, TWFE does not recover
the interpretable causal parameter in general

• This is because TWFE uses already-treated units as controls
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Two-way fixed effects under staggered adoption (5)

• Graphical illustration of βl
kl
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Extra: Negative weight problem
• The problem of TWFE can be seen as negative weight problem

(de Chaisemartin and D’Haultfoeuille 2020)
• Let τit be the treatment effect for unit i at time t. de

Chaisemartin and D’Haultfoeuille (2020) showed that

β̂TWFE
p−→

∑
i ,t: Dit=1

ωitτit , ωit = ϵ̂it∑
i ,t: Dit=1 ϵ̂it

where ϵ̂it is the residuals from running Dit on the fixed effects
• The proof uses FWL theorem

• Importantly, later period can have smaller, and even negative
weights

• As a result, even if all τit are positive, β̂TWFE can be negative (the
same conclusion from Goodman-Bacon decomposition)

• This is known as the negative weight problem
• Sun and Abraham (2021) shows that this happens for event-study

design (i.e., TWFE including lead and lag variable) as well
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Callaway and Sant’Anna Estimator
• Goodman-Bacon pointed out that the problem is due to the use of

already-treated units as control
• But in staggered adoption, we can estimate the effect of each

period’s ATT under parallel trend assumption
• Callaway and Sant’Anna (2021) proposed the following strategy:

• First, estimate the group-specific ATT using either (i)
never-treated or (ii) not-yet-treated group

ATT(g , t) = E[Yt(1) − Yt(0) | G = g ]
where G = g refers to the timing of treatment reception (group)
and T = t is the time that the treatment effect is measured

• Pre-treatmennt covariates can be included for covariate-specific
parallel trend in doubly-robust way

• After estimating the group-specific ATTs, aggregate them according
to the question, including

Dynamic Effect : ATT(k) = average of ATT(g , g + k)

Overall treatment effect : ATT =
G∑

g=1

T∑
t=2

ωg,tATT(g , t)
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Panel Match (1)
• In many cases, there is a treatment reversal.

• Recall that staggered adoption assumes no treatment reversal

• Panel match overcomes this limitation by combining DiD with
matching

• Assuming conditional parallel trend assumption
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Panel Match (2)
• Estimand: Average Treatment Effect of Policy Change for the Treated

E
{

Yi,t+F

(
Xit = 1, Xi,t−1 = 0, {Xi,t−l}L

l=2︸ ︷︷ ︸
Treatment History

)

− Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−l}L

l=2︸ ︷︷ ︸
Treatment History

)
| Xit = 1, Xi,t−1 = 0︸ ︷︷ ︸

for treated unit

}
• Procedure

1. Find the treated observations with Xi,t−1 = 0 and Xit = 1
2. For each treated observation, form a matched set Mit of control

observations with identical treatment history from t − 1 to t − L
3. Refine Mit via matching / weighting to adjust time-invariant /

time-varying confounders
4. Compute DiD estimator

1∑N
i=1

∑T−F
t=L+1 Dit

N∑
i=1

T−F∑
t=L+1

Dit

{(
Yi,t+F − Yi,t−1

)
−

∑
i′∈Mit

w i′

it

(
Yi′,t+F − Yi′,t−1

)}
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Synthetic Control Methods (SCM)
• Setting: Suppose that we have N units and T time periods, and

there is only one treated unit (i = N), which receives the
treatment at time T .

• Estimand:
YNT (1) − YNT (0) = YNT − YNT (0)

and thus the goal is to impute YNT (0).

• Synthetic Control Method proposed to use the weighted average

ŶNT (0) =
N−1∑
i=1

ŵiYiT

where ŵ = arg min
w

T−1∑
i=1

(
YNt −

N−1∑
i=1

wiYit

)2

N−1∑
i=1

ŵi = 1, ŵi ≥ 0

• This can be seen as a regression problem with some constraints 23



Vertical Regression and Horizontal Regression
• Intuition of SCM: Impute the missing values ŶNT (0)
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Vertical Regression
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Horizontal Regression

• Note that vertical regression and horizontal regression is actually
algebraic equivalent (Shen et al. Econometrica)

• The only difference between horizontal / vertical regression and
SCM is that weight can be negative for vertical / horizontal
regression
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Model-based justification of SCM
• Factor Analytic Model:

Yit(0) = γt + δT
t X i + ξT

t U i︸ ︷︷ ︸
Time-varying effects

+ϵit

• The assumption is that there exists weights such that
N−1∑
i=1

wiX i = XN and
N−1∑
i=1

wiU i = UN

• Not compatible with time-varying covariates

• Auto-Regressive Model with time-varying covariates
Yit(0) = ρtYi ,t−1(0) + δT

t X it + ϵit

X it = λt−1Yi ,t−1(0) + ∆t−1X i ,t−1 + vit

• It allows that the past outcomes affect the current treatment
• It assumes no unobserved time-invariant confounders

• Takeaway: As long as either is correct, SCM gives you the
treatment effect

27



Permutation Tests for SCM (1)

• Statistical inference for SCM is tricky since there is one single
treated unit

• Recall that SCM only tries to impute ŶNT (0). We observe YNT (1).
• If we assume YNT (1) as fixed (design-based perspective /

finite-population), then the uncertainty coming from ŶNT (0).

• We can see how unusual the treatment unit is (permutation test)
• Assumption: Exchangeability of treated units and control units in

the absence of treatment
• Under this assumption, you can apply SCM to each control unit

ŶiT (0) for i = 1, · · · , N − 1

28



Permutation Tests for SCM (2)

• Gray line: imputed outcome difference for YiT − ŶiT (0) for
i = 1, · · · , N − 1

• As the imputed outcome difference is significantly different for
treated unit, this implies that the effect is statistically significant

• Note that variance of ŶiT (0) is big after treated periods in this
figure

• This is because of over-fitting, which is caused by the fact that
SCM has too many parameters

• Therefore, you need to use SCM with regularization to mitigate the
overfitting 29



Augmented Synthetic Control
• Goal: Adjust for possible bias due to poor pre-treatment fit

• Assume the data generating process Yit(0) = µit + ϵit , which
encompasses

• Interactive factor model: µit = γt + δT
t X i + ξtU i

• Autoregressive model: µit = ρtYi,t−1(0) + δT
t X it

• Then, impute the counterfactual outcome by

Ŷit(0) =
N−1∑
i=1

wiYiT︸ ︷︷ ︸
SCM

+
(

µ̂NT −
N−1∑
i=1

wi µ̂iT

)
︸ ︷︷ ︸

Imbalance in µ·T

= µ̂NT +
N−1∑
i=1

wi

(
YiT − µ̂iT

)
︸ ︷︷ ︸

Residual Balancing

• Same idea as bias-correction in matching
• See section 8’s slide 12
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