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Logistics

e Important Dates
e Problem Set 10: Due December 8th
e Review Session: December 8th (CGIS K354)
e Final Exam: December 11th

e Today's agenda
e Difference-in-Difference (DiD)
e Synthetic Control Methods (SCM)



Overview: Panel Data / TSCS Data

e Two identification regimes for panel data analysis
e Strict Exogeneity: {Yi:(1), Yi:(0)} 1L Dy | X* T, ay, F1T

e «; is unit fixed effects, F*'7 is time fixed effects, and X}'7 are the
entire histories of covariates
e Implication
e No time-varying confounder exists
e No direct effects from past outcomes to the current outcomes
e No feedback from past outcomes to current and future treatment
status
e No carryover effects from current treatments to future treatments
(i.e., no arrows from D;_1 to Y; or Yii1)
e Strict exogeneity implies parallel trend assumption

E[Yir(0) — is(0) | X;*T] = E[Y;:(0) - Y;5(0) | Xi']
e Sequential ignorability: {Y;:(1), Yi:(0)} 1L D; | X* T, Y}:(Fl)

e This regime allows the inclusion of time-varying confounder, but
they must be observed

e For identification and estimation under sequential ignorability, see
previous module's slide (e.g., Marginal Structural Models)



Overview: Panel Data / TSCS Data
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DiD for Two Time Periods (1)

e Notation:
e G;: treatment indicator (G; = 1 for treatment group)
Dj; = tG;: treatment assignment indicator
Y;:: observed outcome for unit j at time ¢t
Yie(d): potential outcome for unit / at time t

e Estimand: Average treatment effect for the treated (ATT)
T =E[Yu(1) - Yu(0) | G; =1]
e Assumption: Parallel trend
E[Yj1(0) — Yio(0) | G; = 1] = E[Yi1(0) — Yio(0) | G; = 0]

e We also assume no anticipation assumption

Yio(1) = Yio(0)
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DiD for Two Time Periods (3): Identification

Under the parallel trends assumption,
7 ={E[Ya | G = 1]-E[Y1 | G = 0]}~ {E[Yi0 | G; = 1]-E[Yjo | G; = 0]}
Proof:

{E[Yn]| G =1]—E[Yy | G =0]} — {E[Yjo | Gi=1] — E[Yio | G; = 0]}
= {E[Yn(1) | G; = 1] - E[Y;2(0) | G; = O]}

—{E[Y(0) | G; = 1] — E[Y;0(0) | G; = 0]}
= E[Ya(1) | G = 1] —E[Ya(0) | G = ] +E[Ya(0) | G = 1]

= TATT

—E[Yi(0) | G =0] — E[Yjo(0) | G; = 1] + E[Yjo(0) | G; = 0]

= TATT + (E[Yfl(O) — Yi(0) | G =1] — E[Y1(0) — Yio(0) | G; = 0])

=0 under parallel trends

= TATT-



Two-way Fixed Effects for Two Time Periods
e Consider the two-way fixed effects model
Yie = aj+ Be + 7Dt + €
e Now, since D;; = tG;,
Yii — Yio = (b1 — Bo) + TG + €i1 — €io

which means that there are two ways to estimate 7

e Running two-way fixed effects using the entire data
e Taking the first difference and run regression
e Since G; is binary, 7 is written as

T=E[Yi1 — Yo | Gi=1] —E[Ya — Yo | Gi=0]

which corresponds to DiD estimator!!
e Takeaway: Two-way fixed effects and DiD are equivalent if there are only
two time periods

'The parallel trend assumption implies E[ei1 — €0 | Gi] = E[ei1 — €i0] =0



Covariate in DiD for Two Time Periods

e You can use time-invariant covariates X; to make conditional
parallel trend assumption

E[Yi1(0) — Yio(0) | Gi =1, Xi] = E[Yj1(0) — Yio(0) | Gi =0, Xi]
e Estimation strategy

e Outcome regression

e 2 regressions with E[Yi1 — Yio | G; = g, X;i] for g € {0,1}

e 4 regressions with E[Y; | Gi = g, X|] for g € {0,1} and t € {0,1}
e Propensity score weighting (Abadie 2005)

B Re =y 1=

where (X;) =P(G; = 1 | X;) is propensity score
e Doubly robust estimation (Callaway and Sant'Anna 2021)

]E[y,. — Yio — m(X;) G;—W(X;)}

P(G; = 1) 1—7(X;)
where m(X;) = E[Yi1 — Yo | G; =0, X|].



Proof: Propensity score weighting (1)

e Let's prove the identification of weighting estimator.

e Now,
(a6 1) 1200 |
)
{E[(Y,l — Y,'o)G,' | X,'] - TF(xi)E[Yil - YiO | XI]}
P(G; = 1)(1 — #n(X;))

=K

e Then, notice that by the law of total probability,
E[(Yi1 — Yio)Gi | Xi] = E[Yi1 — Yio | Gi = 1, Xi]=(Xi)
and
E[Yi1 — Yio | Xi]
= E[Yi1 = Yio | Xi, G = 1]7(X;)
+E[Yi1 — Yio | Xi, G; = 0](1 — (X))
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Proof: Propensity score weighting (2)

o Let mg(X;) =E[Yi1 — Yio | Xi, G; = g]. Then,

Yin— Yo Gi—m(X;)
Iqwgzn'l—ﬂmﬂ

)(1 — m(Xi))m (X))

. m1(X,-)7T(X,-) — ml(X,')TI‘(X,')2 — mo(
-£{ P(Gr = 1)(1— n(

X
_ E{ (L = 7(X3))m(Xi){m1(Xi) — mo(Xi)}
P (X7))

(G=1)(1-7
(X)) {mu(X;) — mo(X;)}
= E{ P(G =1) : }

e Under conditional parallel trend assumption,

X
i)

}

m(X;) — mo(X7) = E[Yin(1) = Y (0) | G = 1, X] := 7(X;)

|
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Proof: Propensity score weighting (3)

e Notice that 7(X;) = E[T; | Xj]

[t =1 Tonxd) “5 e o)
e
i) e
:E{;(.GT(: ’1)) G = }IP(G,
— E[r(X)) | G = 1] = ATT.

e We can do the similar proof for the doubly robust estimator.
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Staggered Adoption

e In some applications, however, different units receive treatment at
the different timing

e This setting is called staggered adoption

e Importantly, staggered adoption still assumes no switchback in
treatment status

Treatment Status

Unit

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Time

Under Control . Under Treatment
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Two-way fixed effects under staggered adoption (1)

e Under staggered adoption, two-way fixed effects has a lot of
troubles.

e For simplicity, let's consider the following case with two different
treatment timing
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Two-way fixed effects under staggered adoption (2)

e Under staggered adoption, two-way fixed effects model gives you a
weighted average of all possible 2x2 DiD estimator

e Specifically, let

1. Early vs Never Byy = (yE°St(k) - ykP'e(k)) _ (yEOSt(U) _ ere(U))
2. Late vs Never Sy = (Y/POSt(I) - yfre(l)) — (y505t(U) _ yEre(U))
3. Early vs Late ff = (yMd — Pre(k)) (yMid _y/Pfe('))

Post(l i Post(l i
4. Early vs Late Bk,—( ) y/Md) (vk 0 }’/L\/Id)

e Then, Theorem 1 of Goodman-Bacon (2021) shows that g in
TWEFE model represents

B = wiwBru + wiu B + wiBl + wiiBu
where the weight sums up to 1 (wkxy + wyy + wf + wl, = 1) and

o (Share of Group g)2 x Variance of D in that group
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Two-way fixed effects under staggered adoption (3)

e Four possible comparisons
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Two-way fixed effects under staggered adoption (4)

e However, you see that ,6’,’(, does not give you treatment effect under

parallel trend
e Comparison group is already treated (forbidden comparison!)

e Specifically, 3}, is written as

Bl = (vt — yMidy _ (ypost) _ y Midy

Post(l) ylMid )

= (y,
~ ((rf0(0) + ATTE) - (v{9(0) - ATTI))

= ATT} — (ATT} — ATT)™)
so it can be negative if ATTEot > ATT)d
e This means that it is possible that even if all ATT is positive, the

coefficient can be negative

o Takeaway: In staggered adoption setting, TWFE does not recover

the interpretable causal parameter in general
e This is because TWFE uses already-treated units as controls
17



Two-way fixed effects under staggered adoption (5)

e Graphical illustration of 3,
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Extra: Negative weight problem

e The problem of TWFE can be seen as negative weight problem
(de Chaisemartin and D'Haultfoeuille 2020)

e Let 7j; be the treatment effect for unit i at time t. de
Chaisemartin and D'Haultfoeuille (2020) showed that

A P Eit
prwre — Z WitTit, Wit = =————5—
it: Dp=1 Zi,t: Dir=1 €it

where €;; is the residuals from running Dj; on the fixed effects

e The proof uses FWL theorem

e Importantly, later period can have smaller, and even negative
weights
e As a result, even if all 7 are positive, QTWFE can be negative (the
same conclusion from Goodman-Bacon decomposition)
e This is known as the negative weight problem
e Sun and Abraham (2021) shows that this happens for event-study
design (i.e., TWFE including lead and lag variable) as well
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Callaway and Sant’Anna Estimator
e Goodman-Bacon pointed out that the problem is due to the use of
already-treated units as control
e But in staggered adoption, we can estimate the effect of each
period’'s ATT under parallel trend assumption
e Callaway and Sant'Anna (2021) proposed the following strategy:
e First, estimate the group-specific ATT using either (i)
never-treated or (ii) not-yet-treated group

ATT(g,t) = E[Y:(1) — Y:(0) | G = g]

where G = g refers to the timing of treatment reception (group)
and T =t is the time that the treatment effect is measured
e Pre-treatmennt covariates can be included for covariate-specific
parallel trend in doubly-robust way
o After estimating the group-specific AT Ts, aggregate them according
to the question, including

Dynamic Effect : ATT(k) = average of ATT(g,g + k)

G T
Overall treatment effect :  ATT = Z ng’tATT(g, t)
g=1 t=2
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Panel Match (1)

In many cases, there is a treatment reversal.
e Recall that staggered adoption assumes no treatment reversal

War as the Treatment

Democracy as the Treatment
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Ausraka
Karea
Canada
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Panel match overcomes this limitation by combining DiD with
matching
e Assuming conditional parallel trend assumption
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Panel Match (2)

e Estimand: Average Treatment Effect of Policy Change for the Treated

E{ Yi,t+F <Xit - 17Xi,t—1 - 07 {Xi,t—/};;z )
N————

Treatment History

— YittF (Xit =0,X:-1=0, {Xit i} ) | Xie =1, Xje—1 = 0}

Treatment History for treated unit

e Procedure

1.
2.

Find the treated observations with Xj;—1 =0 and Xj; =1

For each treated observation, form a matched set M; of control
observations with identical treatment history from t — 1 to t — L
Refine M,; via matching / weighting to adjust time-invariant /
time-varying confounders

Compute DiD estimator

T XN: TZF {( Lt+F — Y;,t1>

i=1 tL+l ’flltL+l

./
- > w,-'t<v,-/,t+p—v,-gt1)} .

i"eMi;




Synthetic Control Methods (SCM)

e Setting: Suppose that we have N units and T time periods, and
there is only one treated unit (i = N), which receives the
treatment at time T.

e Estimand:
Ynr(1) — Ynr(0) = Ynr — Y7 (0)
and thus the goal is to impute Yy7(0).

e Synthetic Control Method proposed to use the weighted average

N-1
Yar(0) =Y W Yir
i—1

T-1 N—1 2
where w = arg mmiln Zl <YNt — Zl w; Y,-t)
1= 1=

N—-1
dowi=1, W >0
i=1

e This can be seen as a regression problem with some constraints
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Vertical Regression and Horizontal Regression

o —

e Intuition of SCM: Impute the missing values Yy7(0)

Time

Treated
(TimeT)

Units

Y(0) Observed Y(0) Observed

O 0bserees issng |
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Vertical Regression

Units

Control (Unit1... N-1)

,¢— -------------------- -\\
Y \
I \
1 1
: STEP 1: Learn relationship between :
I * Yr1.w-1) (green part) 1
1 * Y1.1-1)1:v-1) (light blue part) |
dE> 1 ['| Y(0) Observed
= : STEP 2: Impute missing value based on :
I * Y1.7-1)n (orange part) 1
1 1
1 1
1 1
1 1
\ K
¥ Ohrerves G v
(TimeT) A ——— ————— — — —
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Horizontal Regression
Units

Control (Unit1... N-1)

,,_________________________- ___..\\
4 \
| 1
: STEP 1: Learn relationship between :
I * Yi.(r-1)n (orange part) 1
1 * Yi.-1)1:v-1) (light blue part) :
1
g : STEP 2: Impute missing value based on Y(0) Observe1
F 1 * Yr1.-1) (8reen part) 1
1 1
1 1
1 |
i 1
\ #
N e e e e e o o e e e e e e e e e e
Treated
(TimeT) Y(0) Observed

e Note that vertical regression and horizontal regression is actually
algebraic equivalent (Shen et al. Econometrica)
e The only difference between horizontal / vertical regression and
SCM is that weight can be negative for vertical / horizontal



Model-based justification of SCM
e Factor Analytic Model:

Yie(0) = ¢ + 5tTXi e &TU,- +€ir
—_——
Time-varying effects

e The assumption is that there exists weights such that
N-1 N-1
ZW,'X,':XN and ZWiUi:UN
i=1 i=1

e Not compatible with time-varying covariates

e Auto-Regressive Model with time-varying covariates
Yit(0) = pt Yie—1(0) + 5tTXit + €jt
Xit = Ae—1Yit-1(0) + A1 X r—1 + Vie
e It allows that the past outcomes affect the current treatment

e |t assumes no unobserved time-invariant confounders

e Takeaway: As long as either is correct, SCM gives you the
treatment effect
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Permutation Tests for SCM (1)

e Statistical inference for SCM is tricky since there is one single
treated unit .
e Recall that SCM only tries to impute Yn7(0). We observe Yyr(1).
e If we assume Yn7(1) as fixed (design-based perspective /

finite-population), then the uncertainty coming from W)

e We can see how unusual the treatment unit is (permutation test)
e Assumption: Exchangeability of treated units and control units in
the absence of treatment
° U/ncﬂthis assumption, you can apply SCM to each control unit
Yir(0) fori=1,--- ,N—1
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Permutation Tests for SCM (2)

arette sales (in packs)

gap in per—capita ciga

Passage of Proposition

2
i

T T T
1970 1975 1980 1985 1990 1995 2000

year

—

e Gray line: imputed outcome difference for Y+ — Y;7(0) for
i=1---,N—-1
e As the imputed outcome difference is significantly different for
treated unit, this implies that the effect is statistically significant

—

e Note that variance of Y;7(0) is big after treated periods in this
figure
e This is because of over-fitting, which is caused by the fact that
SCM has too many parameters
e Therefore, you need to use SCM with regularization to mitigate the
overfitting



Augmented Synthetic Control

e Goal: Adjust for possible bias due to poor pre-treatment fit

e Assume the data generating process Yi:(0) = pit + €z, which

encompasses
e Interactive factor model: p; = v + 6] X; + & U;
e Autoregressive model: p;; = p; Yi—1(0) + 6] X

e Then, impute the counterfactual outcome by

 N-1 N-1
Yie(0) = > wiYir + (ﬁNT > WiﬁiT)
i=1 i=1

SCM Imbalance in p.1
N-1
=AnT + ) Wi<YiT = ﬂiT)
i=1

Residual Balancing

e Same idea as bias-correction in matching
e See section 8's slide 12
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